Classification of Heart conditions by Statistical Characterization of ECG Signal
Main Article Content
Abstract
Electrocardiogram (ECG) signal exhibits important distinctive feature for different cardiac issues. Automatic classification of electrocardiogram (ECG) signal can be used for primary detection of various heart conditions. Information about heart and ischemic changes of heart may be obtained from cleaned ECG signals. ECG signal has an important role in monitoring and diacritic of the heart patients. An accurate ECG classification is challenging problem. The accuracy often depends on proper selection of observing parameters as well as detection algorithms. Heart disorder means abnormal rhythm or abnormalities present in the heart. In this research work, we have developed a decision tree based algorithm to classify heart problems by utilizing the statistical signal characteristic (SSC) of an ECG signal. The proposed model has been tested with real ECG signal to successfully (60-
98%) detect normal, apnea and ventricular tachyarrhythmia condition.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
AJSE contents are under the terms of the Creative Commons Attribution License. This permits anyone to copy, distribute, transmit and adapt the worknon-commercially provided the original work and source is appropriately cited.