Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression

Main Article Content

Farah Yuki Prasetyawati
Dewanto Harjunowibowo
Ahmad Fauzi
Bayu Utomo
Dani Harmanto

Abstract

Electricity demand which increases up to 2.7%, needs to be evaluated to prevent power wastage. This paper proposes an INA219 sensor and a power monitoring solution based on the ESP8266. Power Monitoring stores and displays real-time data in Google Sheets via Blynk version 1.0.1. The system has been calibrated with a fixed LED and resistor as a voltage calibration load. Meanwhile, the lamp and shunt resistors calibrate the shunt voltage. The measuring tools for comparison in calibration are digital multimeters, oscilloscopes, and power data loggers. Calibration using the linear regression technique with accuracy, precision, and uncertainty analysis are determined by Mean Absolute Percent Error (MAPE), Relative Standard Deviation (RSD), and Gaussian distribution. Successively, the sensor coefficient of determination (R2), accuracy, precision, and uncertainty of the load voltage and shunt voltage are 0.999 and 0.997, 99.27% ​​and 93.71%, 99.82% and 99.55%,  0.37 V and 0.89 mV.

Article Details

How to Cite
[1]
F. Y. Prasetyawati, Dewanto Harjunowibowo, A. Fauzi, Bayu Utomo, and Dani Harmanto, “Calibration and Validation of INA219 as Sensor Power Monitoring System using Linear Regression”, AJSE, vol. 22, no. 3, pp. 240 - 249, Dec. 2023.
Section
Articles
Author Biographies

Farah Yuki Prasetyawati, Sebelas Maret University

Farah Yuki Prasetyawati is active as a Physics Education student at Sebelas Maret University. She is one of the outstanding students at his university with various national and international achievements. Apart from that, she has also studied applied physics, electronics, and renewable energy.

Dewanto Harjunowibowo, Sebelas Maret University

Dewanto Harjunowibowo is active as a researcher and lecturer in Physics Education at Sebelas Maret University, Indonesia. He has expertise in physics, electronics, and renewable energy. He has also successfully published various books, scientific articles, and intellectual property rights nationally and internationally.

Bayu Utomo, Sebelas Maret University

Bayu Utomo is active as a postgraduate researcher in the Department of Architecture and Build Environment, Faculty of Engineering, University of Nottingham, Nottingham, UK. He is a member of the Research Group for Electrical, Energy, and Environment, the National Research and Innovation Agency (BRIN). In addition, he has expertise in renewable energy.

Dani Harmanto, De Montfort University

Dani Harmanto is an Associate Professor of Aeronautical Engineering at De Montfort University. In addition, he is also an expert in the fields of mechanical, automotive, engineering, manufacturing, and electronics.

References

[1] T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, Nov. 2020, doi: 10.1016/J.EGYR.2020.07.020.
[2] R. Nepal and N. Paija, “Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy,” Energy Policy, vol. 132, no. May, pp. 771–781, 2019, doi: 10.1016/j.enpol.2019.05.054.
[3] G. Karhan, “Does renewable energy increase growth? Evidence from EU-19 countries,” Int. J. Energy Econ. Policy, vol. 9, no. 2, pp. 341–346, 2019, doi: 10.32479/ijeep.7589.
[4] Q. Cui, H. bo Kuang, C. you Wu, and Y. Li, “The changing trend and influencing factors of energy efficiency: The case of nine countries,” Energy, vol. 64, pp. 1026–1034, 2014, doi: 10.1016/j.energy.2013.11.060.
[5] M. Y. Al-Shorman, M. M. Al-Kofahi, and O. M. Al-Kofahi, “A practical microwatt-meter for electrical energy measurement in programmable devices,” Meas. Control (United Kingdom), vol. 51, no. 9–10, pp. 383–395, 2018, doi: 10.1177/0020294018794350.
[6] D. Brunelli, C. Villani, D. Balsamo, and L. Benini, “Non-invasive voltage measurement in a three-phase autonomous meter,” Microsyst. Technol., vol. 22, no. 7, pp. 1915–1926, 2016, doi: 10.1007/s00542-016-2890-7.
[7] S. Ding, J. Liu, and M. Yue, “The Use of ZigBee Wireless Communication Technology in Industrial Automation Control,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/8317862.
[8] W. Boonsong and W. Ismail, “Wireless monitoring of household electrical power meter using embedded RFID with wireless sensor network platform,” Int. J. Distrib. Sens. Networks, vol. 2014, 2014, doi: 10.1155/2014/876914.
[9] M. Bevilacqua, F. E. Ciarapica, C. Diamantini, and D. Potena, “Big data analytics methodologies applied at energy management in industrial sector: A case study,” Int. J. RF Technol. Res. Appl., vol. 8, no. 3, pp. 105–122, 2017, doi: 10.3233/RFT-171671.
[10] K. Luechaphonthara and A. Vijayalakshmi, “IOT based application for monitoring electricity power consumption in home appliances,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4988–4992, 2019, doi: 10.11591/ijece.v9i6.pp4988-4992.
[11] L. Martirano et al., “Assessment for a Distributed Monitoring System for Industrial and Commercial Applications,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7320–7327, 2019, doi: 10.1109/TIA.2019.2939507.
[12] M. K. Hasan, M. M. Ahmed, B. Pandey, H. Gohel, S. Islam, and I. F. Khalid, “Internet of Things-Based Smart Electricity Monitoring and Control System Using Usage Data,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/6544649.
[13] J. Cai and O. C. Ugweje, “A comparative study of wireless ATM MAC protocols,” 2002 Int. Conf. Commun. Circuits Syst. West Sino Expo. ICCCAS 2002 - Proc., pp. 516–520, 2002, doi: 10.1109/ICCCAS.2002.1180671.
[14] O. O. Kazeem, L. O. Kehinde, O. O. Akintade, and L. O. Kehinde, “Comparative Study of Communication Interfaces for Sensors and Actuators in the Cloud of Internet of Things,” Int. J. Internet Things, vol. 2017, no. 1, pp. 9–13, 2017, doi: 10.5923/j.ijit.20170601.02.
[15] S. Murti, P. Megantoro, G. De Brito Silva, and A. Maseleno, “Design and analysis of DC electrical voltage-current data logger device implemented on wind turbine control system,” J. Robot. Control, vol. 1, no. 3, pp. 75–80, 2020, doi: 10.18196/jrc.1317.
[16] L. J. Ekanayake, D. Ihalage, and S. P. Abyesundara, “Performance Evaluation of Google Spreadsheet over RDBMS through Cloud Scripting Algorithms,” 2021 Int. Conf. Comput. Commun. Informatics, ICCCI 2021, pp. 1–7, 2021, doi: 10.1109/ICCCI50826.2021.9402432.
[17] R. Hut et al., “OPEnS Hub: Real-Time Data Logging, Connecting Field Sensors to Google Sheets,” 2019, doi: 10.3389/feart.2019.00137.
[18] R. Z. Fitriani, C. B. D. Kuncoro, and Y. Der Kuan, “Internet-based remote setting and data acquisition for fuel cell,” Sensors Mater., vol. 33, no. 11, pp. 3903–3915, 2021, doi: 10.18494/SAM.2021.3630.
[19] S. Abdullah, A. Daud, N. S. Mohamad Hadis, S. A. Hamid, S. Y. Fadhlullah, and N. S. Damanhuri, “Internet of Things (IoT) Based Smart Shop (S-SHOP) System with RFID Technique,” J. Phys. Conf. Ser., vol. 1535, no. 1, p. 012011, May 2020, doi: 10.1088/1742-6596/1535/1/012011.
[20] Texas Instruments, “Bidirectional Current/Power Monitor INA219 Datasheet,” no. December. Texas Instruments, p. 39, 2015.
[21] P. Panja, W. Jia, and B. McPherson, “Prediction of well performance in SACROC field using stacked Long Short-Term Memory (LSTM) network,” Expert Syst. Appl., vol. 205, p. 117670, Nov. 2022, doi: 10.1016/J.ESWA.2022.117670.
[22] X. Chen, Y. Wang, and J. Tuo, “Short-term power load forecasting of GWO-KELM based on Kalman filter,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 12086–12090, Jan. 2020, doi: 10.1016/J.IFACOL.2020.12.760.
[23] A. Ghosh, P. Satvaya, P. K. Kundu, and G. Sarkar, “Calibration of RGB sensor for estimation of real-time correlated color temperature using machine learning regression techniques,” Optik (Stuttg)., vol. 258, p. 168954, May 2022, doi: 10.1016/J.IJLEO.2022.168954.
[24] S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, Jul. 2016, doi: 10.1016/J.IJFORECAST.2015.12.003.
[25] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012002, Dec. 2017, doi: 10.1088/1742-6596/930/1/012002.
[26] D. Koutsandreas, E. Spiliotis, F. Petropoulos, and V. Assimakopoulos, “On the selection of forecasting accuracy measures,” J. Oper. Res. Soc., vol. 73, no. 5, pp. 937–954, 2022, doi: 10.1080/01605682.2021.1892464.
[27] J. E. M. Perea Martins, “Introducing the concepts of measurement accuracy and precision in the classroom,” Phys. Educ., vol. 54, no. 5, p. 055029, Aug. 2019, doi: 10.1088/1361-6552/AB3143.
[28] X. Li, A. Ren, and Q. Li, “Exploring Patterns of Transportation-Related CO2 Emissions Using Machine Learning Methods,” Sustain., vol. 14, no. 8, Apr. 2022, doi: 10.3390/SU14084588.
[29] Y. Gao, M. G. Ierapetritou, and F. J. Muzzio, “Determination of the confidence interval of the relative standard deviation using convolution,” J. Pharm. Innov., vol. 8, no. 2, pp. 72–82, Jun. 2013, doi: 10.1007/S12247-012-9144-8/TABLES/3.
[30] S. Mukherjee, S. Chakrabarty, P. C. Mishra, and P. Chaudhuri, “Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation,” Chem. Eng. Process. - Process Intensif., vol. 150, Apr. 2020, doi: 10.1016/j.cep.2020.107887.
[31] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623/SUPP-1.
[1] T. Ahmad and D. Zhang, “A critical review of comparative global historical energy consumption and future demand: The story told so far,” Energy Reports, vol. 6, pp. 1973–1991, Nov. 2020, doi: 10.1016/J.EGYR.2020.07.020.
[2] R. Nepal and N. Paija, “Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy,” Energy Policy, vol. 132, no. May, pp. 771–781, 2019, doi: 10.1016/j.enpol.2019.05.054.
[3] G. Karhan, “Does renewable energy increase growth? Evidence from EU-19 countries,” Int. J. Energy Econ. Policy, vol. 9, no. 2, pp. 341–346, 2019, doi: 10.32479/ijeep.7589.
[4] Q. Cui, H. bo Kuang, C. you Wu, and Y. Li, “The changing trend and influencing factors of energy efficiency: The case of nine countries,” Energy, vol. 64, pp. 1026–1034, 2014, doi: 10.1016/j.energy.2013.11.060.
[5] M. Y. Al-Shorman, M. M. Al-Kofahi, and O. M. Al-Kofahi, “A practical microwatt-meter for electrical energy measurement in programmable devices,” Meas. Control (United Kingdom), vol. 51, no. 9–10, pp. 383–395, 2018, doi: 10.1177/0020294018794350.
[6] D. Brunelli, C. Villani, D. Balsamo, and L. Benini, “Non-invasive voltage measurement in a three-phase autonomous meter,” Microsyst. Technol., vol. 22, no. 7, pp. 1915–1926, 2016, doi: 10.1007/s00542-016-2890-7.
[7] S. Ding, J. Liu, and M. Yue, “The Use of ZigBee Wireless Communication Technology in Industrial Automation Control,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/8317862.
[8] W. Boonsong and W. Ismail, “Wireless monitoring of household electrical power meter using embedded RFID with wireless sensor network platform,” Int. J. Distrib. Sens. Networks, vol. 2014, 2014, doi: 10.1155/2014/876914.
[9] M. Bevilacqua, F. E. Ciarapica, C. Diamantini, and D. Potena, “Big data analytics methodologies applied at energy management in industrial sector: A case study,” Int. J. RF Technol. Res. Appl., vol. 8, no. 3, pp. 105–122, 2017, doi: 10.3233/RFT-171671.
[10] K. Luechaphonthara and A. Vijayalakshmi, “IOT based application for monitoring electricity power consumption in home appliances,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4988–4992, 2019, doi: 10.11591/ijece.v9i6.pp4988-4992.
[11] L. Martirano et al., “Assessment for a Distributed Monitoring System for Industrial and Commercial Applications,” IEEE Trans. Ind. Appl., vol. 55, no. 6, pp. 7320–7327, 2019, doi: 10.1109/TIA.2019.2939507.
[12] M. K. Hasan, M. M. Ahmed, B. Pandey, H. Gohel, S. Islam, and I. F. Khalid, “Internet of Things-Based Smart Electricity Monitoring and Control System Using Usage Data,” Wirel. Commun. Mob. Comput., vol. 2021, 2021, doi: 10.1155/2021/6544649.
[13] J. Cai and O. C. Ugweje, “A comparative study of wireless ATM MAC protocols,” 2002 Int. Conf. Commun. Circuits Syst. West Sino Expo. ICCCAS 2002 - Proc., pp. 516–520, 2002, doi: 10.1109/ICCCAS.2002.1180671.
[14] O. O. Kazeem, L. O. Kehinde, O. O. Akintade, and L. O. Kehinde, “Comparative Study of Communication Interfaces for Sensors and Actuators in the Cloud of Internet of Things,” Int. J. Internet Things, vol. 2017, no. 1, pp. 9–13, 2017, doi: 10.5923/j.ijit.20170601.02.
[15] S. Murti, P. Megantoro, G. De Brito Silva, and A. Maseleno, “Design and analysis of DC electrical voltage-current data logger device implemented on wind turbine control system,” J. Robot. Control, vol. 1, no. 3, pp. 75–80, 2020, doi: 10.18196/jrc.1317.
[16] L. J. Ekanayake, D. Ihalage, and S. P. Abyesundara, “Performance Evaluation of Google Spreadsheet over RDBMS through Cloud Scripting Algorithms,” 2021 Int. Conf. Comput. Commun. Informatics, ICCCI 2021, pp. 1–7, 2021, doi: 10.1109/ICCCI50826.2021.9402432.
[17] R. Hut et al., “OPEnS Hub: Real-Time Data Logging, Connecting Field Sensors to Google Sheets,” 2019, doi: 10.3389/feart.2019.00137.
[18] R. Z. Fitriani, C. B. D. Kuncoro, and Y. Der Kuan, “Internet-based remote setting and data acquisition for fuel cell,” Sensors Mater., vol. 33, no. 11, pp. 3903–3915, 2021, doi: 10.18494/SAM.2021.3630.
[19] S. Abdullah, A. Daud, N. S. Mohamad Hadis, S. A. Hamid, S. Y. Fadhlullah, and N. S. Damanhuri, “Internet of Things (IoT) Based Smart Shop (S-SHOP) System with RFID Technique,” J. Phys. Conf. Ser., vol. 1535, no. 1, p. 012011, May 2020, doi: 10.1088/1742-6596/1535/1/012011.
[20] Texas Instruments, “Bidirectional Current/Power Monitor INA219 Datasheet,” no. December. Texas Instruments, p. 39, 2015.
[21] P. Panja, W. Jia, and B. McPherson, “Prediction of well performance in SACROC field using stacked Long Short-Term Memory (LSTM) network,” Expert Syst. Appl., vol. 205, p. 117670, Nov. 2022, doi: 10.1016/J.ESWA.2022.117670.
[22] X. Chen, Y. Wang, and J. Tuo, “Short-term power load forecasting of GWO-KELM based on Kalman filter,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 12086–12090, Jan. 2020, doi: 10.1016/J.IFACOL.2020.12.760.
[23] A. Ghosh, P. Satvaya, P. K. Kundu, and G. Sarkar, “Calibration of RGB sensor for estimation of real-time correlated color temperature using machine learning regression techniques,” Optik (Stuttg)., vol. 258, p. 168954, May 2022, doi: 10.1016/J.IJLEO.2022.168954.
[24] S. Kim and H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts,” Int. J. Forecast., vol. 32, no. 3, pp. 669–679, Jul. 2016, doi: 10.1016/J.IJFORECAST.2015.12.003.
[25] U. Khair, H. Fahmi, S. Al Hakim, and R. Rahim, “Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error,” J. Phys. Conf. Ser., vol. 930, no. 1, p. 012002, Dec. 2017, doi: 10.1088/1742-6596/930/1/012002.
[26] D. Koutsandreas, E. Spiliotis, F. Petropoulos, and V. Assimakopoulos, “On the selection of forecasting accuracy measures,” J. Oper. Res. Soc., vol. 73, no. 5, pp. 937–954, 2022, doi: 10.1080/01605682.2021.1892464.
[27] J. E. M. Perea Martins, “Introducing the concepts of measurement accuracy and precision in the classroom,” Phys. Educ., vol. 54, no. 5, p. 055029, Aug. 2019, doi: 10.1088/1361-6552/AB3143.
[28] X. Li, A. Ren, and Q. Li, “Exploring Patterns of Transportation-Related CO2 Emissions Using Machine Learning Methods,” Sustain., vol. 14, no. 8, Apr. 2022, doi: 10.3390/SU14084588.
[29] Y. Gao, M. G. Ierapetritou, and F. J. Muzzio, “Determination of the confidence interval of the relative standard deviation using convolution,” J. Pharm. Innov., vol. 8, no. 2, pp. 72–82, Jun. 2013, doi: 10.1007/S12247-012-9144-8/TABLES/3.
[30] S. Mukherjee, S. Chakrabarty, P. C. Mishra, and P. Chaudhuri, “Transient heat transfer characteristics and process intensification with Al2O3-water and TiO2-water nanofluids: An experimental investigation,” Chem. Eng. Process. - Process Intensif., vol. 150, Apr. 2020, doi: 10.1016/j.cep.2020.107887.
[31] D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, pp. 1–24, 2021, doi: 10.7717/PEERJ-CS.623/SUPP-1.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.