Structural, Optical, and Electronic Properties Analysis of Praseodymium Doped ZnO: Insights from Density Functional Theory with GGA+U Approach

Main Article Content

Jannatul Ferdush
Md Al Amin Bhuiyan Shuvo
Shahriar Haque Badhan
Jahirul Islam
Md. Ashraful Islam
Md Mahadi Hasan

Abstract

ZnO is widely used as a semiconductor material due to its wide bandgap, high exciton binding energy, and excellent transparency in the visible range, which make it suitable for optoelectronic applications. Doping in ZnO is important because it allows for controlling its electrical properties, enables the tuning of conductivity, and enhances its functionality for specific applications. Doping can introduce new energy levels within the bandgap. Moreover, it improves the performance of ZnO-based devices. This study explored the structural, optical, and electronic properties of pure and Praseodymium ion (Pr3+) doped ZnO using GGA+U based DFT. Results agreed with prior research, showing compatible lattice parameters and band gap for pure ZnO. Increasing Pr concentration expanded lattice parameters and volumes while reducing the energy band gap. Pr doping shifted the Fermi level to the upper conduction band, causing an overlap between the conduction and valence bands. This indicated a transition from a semiconductor to an n-type degenerate semiconductor with metal-like characteristics. Higher doping concentrations led to a shift in density of states towards lower energies. Computed optical properties exhibited red shifts in absorption peaks and increased absorption in the near and far ultraviolet regions following Pr doping. Similar red shifts were observed in the reflectivity spectrum and other optical properties. The real dielectric constant (ε1 (ω)) displayed negative values, signifying metallic behavior at specific photon energies, consistent with band structure optimization.

Article Details

How to Cite
[1]
J. Ferdush, M. A. A. Bhuiyan Shuvo, S. Haque Badhan, J. Islam, M. A. Islam, and M. M. Hasan, “Structural, Optical, and Electronic Properties Analysis of Praseodymium Doped ZnO: Insights from Density Functional Theory with GGA+U Approach”, AJSE, vol. 23, no. 3, pp. 248 - 257, Dec. 2024.
Section
Articles

References

[1] I. Benaicha, J. Mhalla, A. Raidou, A. Qachaou, and M. Fahoume, “Effect of Ni doping on optical, structural, and morphological properties of ZnO thin films synthesized by MSILAR: Experimental and DFT study,” Materialia, vol. 15, p. 101015, Mar. 2021, doi: 10.1016/j.mtla.2021.101015.
[2] J.-Q. Wen, J.-M. Zhang, Z.-G. Qiu, X. Yang, and Z.-Q. Li, “The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties,” Physica B: Condensed Matter, vol. 534, pp. 44–50, Apr. 2018, doi: 10.1016/j.physb.2018.01.035.
[3] A. A. Al-Ghamdi et al., “Semiconducting properties of Al doped ZnO thin films,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 131, pp. 512–517, Oct. 2014, doi: 10.1016/j.saa.2014.04.020.
[4] R. Krishnaveni and S. Thambidurai, “Industrial method of cotton fabric finishing with chitosan–ZnO composite for anti-bacterial and thermal stability,” Industrial Crops and Products, vol. 47, pp. 160–167, May 2013, doi: 10.1016/j.indcrop.2013.03.007.
[5] Y. Zhao, H. Yang, B. Yang, Z. Liu, and P. Yang, “Effects of uniaxial stress on the electrical structure and optical properties of Al-doped n-type ZnO,” Solar Energy, vol. 140, pp. 21–26, Dec. 2016, doi: 10.1016/j.solener.2016.10.035.
[6] S. Tabassum, E. Yamasue, H. Okumura, and K. N. Ishihara, “Electrical stability of Al-doped ZnO transparent electrode prepared by sol-gel method,” Applied Surface Science, vol. 377, pp. 355–360, Jul. 2016, doi: 10.1016/j.apsusc.2016.03.133.
[7] Y. L. Su, Q. Y. Zhang, N. Zhou, C. Y. Ma, X. Z. Liu, and J. J. Zhao, “Study on Co-doped ZnO comparatively by first-principles calculations and relevant experiments,” Solid State Communications, vol. 250, pp. 123–128, Jan. 2017, doi: 10.1016/j.ssc.2016.12.002.
[8] L. Zhao, G. Shao, S. Song, X. Qin, and S. Han, “Development on transparent conductive ZnO thin films doped with various impurity elements,” Rare Metals, vol. 30, no. 2, pp. 175–182, Apr. 2011, doi: 10.1007/s12598-011-0220-x.
[9] P. Erhart and K. Albe, “Diffusion of zinc vacancies and interstitials in zinc oxide,” Applied Physics Letters, vol. 88, no. 20, p. 201918, May 2006, doi: 10.1063/1.2206559.
[10] A. Janotti and C. G. Van de Walle, “Native point defects in ZnO,” Phys. Rev. B, vol. 76, no. 16, p. 165202, Oct. 2007, doi: 10.1103/PhysRevB.76.165202.
[11] N. Yamamoto et al., “Development of Ga-doped ZnO transparent electrodes for liquid crystal display panels,” Thin Solid Films, vol. 520, no. 12, pp. 4131–4138, Apr. 2012, doi: 10.1016/j.tsf.2011.04.067.
[12] A. El Amiri, H. Lassri, M. Abid, and E. K. Hlil, “Study of Cu-doping effects on magnetic properties of Fe-doped ZnO by first principle calculations,” Bull Mater Sci, vol. 37, no. 4, pp. 805–808, Jun. 2014, doi: 10.1007/s12034-014-0009-2.
[13] A. Ali Fatima, S. Devadason, and T. Mahalingam, “Structural, luminescence and magnetic properties of Mn doped ZnO thin films using spin coating technique,” J Mater Sci: Mater Electron, vol. 25, no. 8, pp. 3466–3472, Aug. 2014, doi: 10.1007/s10854-014-2040-x.
[14] H. Ahmoum et al., “Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method,” Materials Science in Semiconductor Processing, vol. 123, p. 105530, Mar. 2021, doi: 10.1016/j.mssp.2020.105530.
[15] F. Pan, C. Song, X. J. Liu, Y. C. Yang, and F. Zeng, “Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films,” Materials Science and Engineering: R: Reports, vol. 62, no. 1, pp. 1–35, Jun. 2008, doi: 10.1016/j.mser.2008.04.002.
[16] J. Lang et al., “Rapid synthesis and luminescence of the Eu3+, Er3+ codoped ZnO quantum-dot chain via chemical precipitation method,” Applied Surface Science, vol. 257, no. 22, pp. 9574–9577, Sep. 2011, doi: 10.1016/j.apsusc.2011.06.067.
[17] M. Achehboune et al., “Effect of Yb concentration on the structural, magnetic and optoelectronic properties of Yb doped ZnO: first principles calculation,” Opt Quant Electron, vol. 53, no. 12, p. 709, Nov. 2021, doi: 10.1007/s11082-021-03369-x.
[18] R. Zamiri, A. Kaushal, A. Rebelo, and J. M. F. Ferreira, “Er doped ZnO nanoplates: Synthesis, optical and dielectric properties,” Ceramics International, vol. 40, no. 1, Part B, pp. 1635–1639, Jan. 2014, doi: 10.1016/j.ceramint.2013.07.054.
[19] S. H. Deng, M. Y. Duan, M. Xu, and L. He, “Effect of La doping on the electronic structure and optical properties of ZnO,” Physica B: Condensed Matter, vol. 406, no. 11, pp. 2314–2318, May 2011, doi: 10.1016/j.physb.2011.03.067.
[20] X. Ma and Z. Wang, “The optical properties of rare earth Gd doped ZnO nanocrystals,” Materials Science in Semiconductor Processing, vol. 15, no. 3, pp. 227–231, Jun. 2012, doi: 10.1016/j.mssp.2011.05.013.
[21] V. Vaiano, M. Matarangolo, O. Sacco, and D. Sannino, “Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts,” Applied Catalysis B: Environmental, vol. 209, pp. 621–630, Jul. 2017, doi: 10.1016/j.apcatb.2017.03.015.
[22] M. Habibur Rahman, M. Zahidur Rahaman, E. Haque Chowdhury, M. Motalab, A. K. M. Akhter Hossain, and M. Roknuzzaman, “Understanding the role of rare-earth metal doping on the electronic structure and optical characteristics of ZnO,” Molecular Systems Design & Engineering, vol. 7, no. 11, pp. 1516–1528, 2022, doi: 10.1039/D2ME00093H.
[23] N. Bhakta, A. Bandyopadhyay, A. Bajorek, and P. K. Chakrabarti, “Microstructural analysis, dielectric properties and room temperature magnetic ordering of Pr-doped ZnO nanoparticles,” Appl. Phys. A, vol. 125, no. 12, p. 811, Nov. 2019, doi: 10.1007/s00339-019-3016-8.
[24] X. J. Zhang, W. B. Mi, X. C. Wang, and H. L. Bai, “First-principles prediction of electronic structure and magnetic ordering of rare-earth metals doped ZnO,” Journal of Alloys and Compounds, vol. 617, pp. 828–833, Dec. 2014, doi: 10.1016/j.jallcom.2014.07.218.
[25] S. J. Clark et al., “First principles methods using CASTEP,” Zeitschrift für Kristallographie - Crystalline Materials, vol. 220, no. 5–6, pp. 567–570, May 2005, doi: 10.1524/zkri.220.5.567.65075.
[26] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865.
[27] J. Wang, T. Shen, Y. Feng, and H. Liu, “A GGA+U study of electronic structure and the optical properties of different concentrations Tb doped ZnO,” Physica B: Condensed Matter, vol. 576, p. 411720, Jan. 2020, doi: 10.1016/j.physb.2019.411720.
[28] A. Abbassi, A. El Amrani, H. Ez-Zahraouy, A. Benyoussef, and Y. El Amraoui, “First-principles study on the electronic and optical properties of Si and Al co-doped zinc oxide for solar cell devices,” Appl. Phys. A, vol. 122, no. 6, p. 584, May 2016, doi: 10.1007/s00339-016-0111-y.
[29] S. Farhat, M. Rekaby, and R. Awad, “Synthesis and Characterization of Er-Doped Nano ZnO Samples,” J Supercond Nov Magn, vol. 31, no. 9, pp. 3051–3061, Sep. 2018, doi: 10.1007/s10948-017-4548-9.
[30] S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters,” Phys. Rev. B, vol. 58, no. 21, pp. 14102–14105, Dec. 1998, doi: 10.1103/PhysRevB.58.14102.
[31] Ü. Özgür et al., “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, vol. 98, no. 4, p. 041301, Aug. 2005, doi: 10.1063/1.1992666.
[32] J.-L. Chen, N. Devi, N. Li, D.-J. Fu, and X.-W. Ke, “Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties*,” Chinese Phys. B, vol. 27, no. 8, p. 086102, Aug. 2018, doi: 10.1088/1674-1056/27/8/086102.
[33] I. Benaicha, J. Mhalla, A. Raidou, A. Qachaou, and M. Fahoume, “Effect of Ni doping on optical, structural, and morphological properties of ZnO thin films synthesized by MSILAR: Experimental and DFT study,” Materialia, vol. 15, p. 101015, Mar. 2021, doi: 10.1016/j.mtla.2021.101015.
[34] G. Li et al., “Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory,” Physica B: Condensed Matter, vol. 562, pp. 67–74, Jun. 2019, doi: 10.1016/j.physb.2019.03.020.
[35] E. Burstein, “Anomalous Optical Absorption Limit in InSb,” Phys. Rev., vol. 93, no. 3, pp. 632–633, Feb. 1954, doi: 10.1103/PhysRev.93.632.
[36] X. Zhang, J. Chen, G. Lou, J. Li, and F. Wang, “Theoretical prediction of new structure, mechanical properties, anisotropy in elasticity and thermodynamic properties of Mo3Ge material,” Vacuum, vol. 170, p. 108978, Dec. 2019, doi: 10.1016/j.vacuum.2019.108978.
[37] L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE=La, Er, Nd) doped ZnO,” Journal of Alloys and Compounds, vol. 617, pp. 102–107, Dec. 2014, doi: 10.1016/j.jallcom.2014.08.019.
[38] L. Honglin, L. Yingbo, L. Jinzhu, and Y. Ke, “Experimental and first-principles studies of structural and optical properties of rare earth (RE=La, Er, Nd) doped ZnO,” Journal of Alloys and Compounds, vol. 617, pp. 102–107, Dec. 2014, doi: 10.1016/j.jallcom.2014.08.019.
[39] R. L. Hengehold, R. J. Almassy, and F. L. Pedrotti, “Electron Energy-Loss and Ultraviolet-Reflectivity Spectra of Crystalline ZnO,” Phys. Rev. B, vol. 1, no. 12, pp. 4784–4791, Jun. 1970, doi: 10.1103/PhysRevB.1.4784.
[40] Z. Jin, L. Qiao, C. Guo, Z. He, L. Liu, and M. Rong, “First-priniciple study of electrical and optical properties of (Al,Sn) co-doped ZnO,” Optik, vol. 127, no. 4, pp. 1988–1992, Feb. 2016, doi: 10.1016/j.ijleo.2015.10.224.
[41] Q.-B. Wang, C. Zhou, L. Chen, X.-C. Wang, and K.-H. He, “The optical properties of NiAs phase ZnO under pressure calculated by GGA+U method,” Optics Communications, vol. 312, pp. 185–191, Feb. 2014, doi: 10.1016/j.optcom.2013.09.035.
[42] Y. Pan and J. Zhang, “Influence of noble metals on the electronic and optical properties of the monoclinic ZrO2: A first-principles study,” Vacuum, vol. 187, p. 110112, May 2021, doi: 10.1016/j.vacuum.2021.110112.
[43] Y. G. Zhang, G. B. Zhang, and Y. X. Wang, “First-principles study of the electronic structure and optical properties of Ce-doped ZnO: Journal of Applied Physics: Vol 109, No 6.” Accessed: Jan. 07, 2023. [Online]. Available: https://aip.scitation.org/doi/full/10.1063/1.3561436

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.