Empirical Analysis of the SAC-OCDMA-WDM System by Leveraging the AND Subtraction Technique

Main Article Content

Fahmidul Islam
Mohammad Nasir Uddin

Abstract

This study used C-band carrier frequency to assess Spectral Amplitude Coding Optical Code Division Multiple Access or SAC-OCDMA systems using Fiber Bragg Gratings (FBG) as encoders and decoders by implementing the AND subtraction detection technique. The optical transmission distance, optical power, channel bandwidth, data rate, and number of channels are only a few of the many factors that affect how well a system performs. Numerous simulations have been conducted to analyze the influence of the above-mentioned parameters on the system’s performance. The proposed SAC-OCDMA system has been integrated with the Wavelength Division Multiplexing or WDM system to increase the active channel's quantity. The network has been designed and analyzed using commercially available Optisystem software. The proposed SAC-OCDMA system architecture with two channels stays within operational limit up to unrepeated transmission over 336 km at a data rate of 1.6 Gbit/s. These results were attained with the pre-FEC threshold. Further, the SAC-OCDMA system has been simulated up to a maximum of ten channels considering the pre-FEC bit error rate threshold. The obtained results have been compared with recently reported technical articles and found superior in terms of the number of channels and transmission distance. The proposed model obtained a superior data rate of 6.4 Gbps, and a maximum transmission distance of 24 km for 10-channel architecture.

Article Details

How to Cite
[1]
F. Islam and M. N. Uddin, “Empirical Analysis of the SAC-OCDMA-WDM System by Leveraging the AND Subtraction Technique”, AJSE, vol. 23, no. 2, pp. 145 - 157, Aug. 2024.
Section
Articles

References

[1] T. Hossain, T. Islam, and M. N. Uddin, “320 Channel Optically Amplified 1550 nm Light wave Directly Modulated CATV Transport System Performance Improvement Using Optical Injection Technique,” AIUB J. Sci. Eng. AJSE, vol. 16, no. 2, Art. no. 2, 2017, doi: 10.53799/ajse.v16i2.76.
[2] M. Singh, A. Atieh, M. H. Aly, and S. A. Abd El-Mottaleb, “120 Gbps SAC-OCDMA-OAM-based FSO transmission system: Performance evaluation under different weather conditions,” Alex. Eng. J., vol. 61, no. 12, pp. 10407–10418, Dec. 2022, doi: 10.1016/j.aej.2022.03.070.
[3] S. Chaudhary, X. Tang, A. Sharma, B. Lin, X. Wei, and A. Parmar, “A cost-effective 100 Gbps SAC-OCDMA–PDM based inter-satellite communication link,” Opt. Quantum Electron., vol. 51, no. 5, pp. 1–10, 2019, doi: 10.1007/s11082-019-1864-2.
[4] M. Alayedi, C. Abdelhamid, A. Ferhat, and H. Mrabet, “A fair comparison of SAC-OCDMA system configurations based on two dimensional cyclic shift code and spectral direct detection,” Telecommun. Syst., vol. 79, pp. 1–16, Feb. 2022, doi: 10.1007/s11235-021-00840-8.
[5] S. Kumawat and R. Maddila, “A Review on Code Families for SAC–OCDMA Systems,” 2020, pp. 307–315. doi: 10.1007/978-981-13-6159-3_33.
[6] C. Abdelhamid, K. Meftah, D. Ameur, M. Alayedi, and H. Mrabet, A Performance Investigation of SAC-OCDMA System Based on a Spectral Efficient 2D Cyclic Shift Code for Next Generation Passive Optical Network. 2021. doi: 10.21203/rs.3.rs-205010/v1.
[7] A. Fares, K. Saouchi, F. Brik, and H. Djellab, Analysis of the Performance of a Coherent SAC-OCDMA-OFDM-DWDM System Using a Flat Optical Frequency Comb Generator for Multiservice Networks. 2021. doi: 10.21203/rs.3.rs-1122460/v1.
[8] H. M. R. Al-Khafaji, S. A. Aljunid, and A. Rathi, “An Emerging Detection Design Adopting Two-Keying Technique in SAC-OCDMA-Based MDW Code,” in 2023 3rd International Conference on Intelligent Communication and Computational Techniques (ICCT), Jan. 2023, pp. 1–5. doi: 10.1109/ICCT56969.2023.10076193.
[9] M. Rahmani, A. Cherifi, G. N. Sabri, B. S. Bouazza, and A. Karar, “Contribution of OFDM modulation to improve the performance of non-coherent OCDMA system based on a new variable weight zero cross correlation code,” Opt. Quantum Electron., vol. 54, no. 9, p. 576, Aug. 2022, doi: 10.1007/s11082-022-03949-5.
[10] Y. Liu, C. Li, and Y. Lu, “Construction and performance analysis of variable weight zero cross correlation Latin square code for spectral amplitude coding OCDMA systems,” Optoelectron. Lett., vol. 19, no. 1, pp. 41–48, Jan. 2023, doi: 10.1007/s11801-023-2120-3.
[11] M. Singh, J. Kříž, M. M. Kamruzzaman, V. Dhasarathan, A. Sharma, and S. A. Abd El-Mottaleb, “Design of a High-Speed OFDM-SAC-OCDMA-Based FSO System Using EDW Codes for Supporting 5G Data Services and Smart City Applications,” Front. Phys., vol. 10, pp. 1–10, 2022, doi: 10.3389/fphy.2022.934848.
[12] W. Sahraoui et al., “Design and Development of Fibonacci Code for SAC-OCDMA System,” in 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO), Oct. 2022, pp. 462–466. doi: 10.1109/ELNANO54667.2022.9927078.
[13] Z. Lu, Y. Lu, and C. Li, “Design of zero cross correlation variable weight codes for multimedia services based on magic square in SAC-OCDMA systems,” Optoelectron. Lett., vol. 17, pp. 539–545, Sep. 2021, doi: 10.1007/s11801-021-0198-z.
[14] A. Choudhary and N. K. Agrawal, “Designing of high-speed inter-satellite optical wireless communication (IsOWC) system incorporating multilevel 3-D orthogonal modulation scheme,” J. Opt., Jan. 2023, doi: 10.1007/s12596-022-01090-w.
[15] S. Abd El Mottaleb, H. Fayed, M. Aly, M. Rizk, and N. Ismail, “An efficient SAC-OCDMA system using three different codes with two different detection techniques for maximum allowable users,” Opt. Quantum Electron., vol. 51, pp. 1–10, Oct. 2019, doi: 10.1007/s11082-019-2065-8.
[16] S. Boukricha, K. Ghoumid, S. Mekaoui, E. M. Ar-Reyouchi, H. Bourouina, and R. Yahiaoui, “SAC-OCDMA system performance using narrowband Bragg filter encoders and decoders,” SN Appl. Sci., vol. 2, pp. 1–7, Jun. 2020, doi: 10.1007/s42452-020-2700-9.
[17] T. Osuch, P. Gasior, K. Markowski, and K. Jedrzejewski, “Development of fiber Bragg gratings technology and their complex structures for sensing, telecommunications and microwave photonics applications,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 62, pp. 627–633, Dec. 2014, doi: 10.2478/bpasts-2014-0068.
[18] X. Li et al., “Development and performance improvement of a novel zero cross-correlation code for SAC-OCDMA systems,” J. Opt. Commun., pp. 1–11, Sep. 2020, doi: 10.1515/joc-2020-0086.
[19] Y. Zouine, Z. Madini, Y. Zouine, and Z. Madini, Direct Sequence-Optical Code-Division Multiple Access (DS-OCDMA): Receiver Structures for Performance Improvement. IntechOpen, 2019. doi: 10.5772/intechopen.85860.
[20] S. Nahar, M. R. M. Arnob, and M. N. Uddin, “Empirical analysis of polarization division multiplexing-dense wavelength division multiplexing hybrid multiplexing techniques for channel capacity enhancement,” Int. J. Electr. Comput. Eng. IJECE, vol. 13, no. 1, Art. no. 1, Feb. 2023, doi: 10.11591/ijece.v13i1.pp590-600.
[21] W. Sahraoui, H. Aoudia, A. Amphawan, B. Smail, Y. Belkhier, and R. Shaw, “Enhanced Performances of SAC-OCDMA System Operating with Different Codes,” Jan. 2021, pp. 473–485. doi: 10.1007/978-981-16-0749-3_35.
[22] S. Driz and F. Benattou, “Enhancing QS – SAC – OCDMA networks capacity via 2D spectral/polarization OZCZ coding technique based on modified Pascal’s triangle matrix,” Opt. Quantum Electron., vol. 54, pp. 1–8, Aug. 2022, doi: 10.1007/s11082-022-03865-8.
[23] T. Sharma, R. Maddila, and S. Aljunid, “Simulative Investigation of Spectral Amplitude Coding Based OCDMA System Using Quantum Logic Gate Code with NAND and Direct Detection Techniques,” J. Opt. Soc. Korea, vol. 3, pp. 531–540, Dec. 2019, doi: 10.3807/COPP.2019.3.6.531.
[24] S. Boukricha, K. Ghoumid, E. M. Ar-Reyouchi, Y. Elmar, R. Yahiaoui, and O. Elmazria, “Evaluation of SAC-OCDMA System Performance in Terms of BER and Q-Factor Using FBGs and M-Sequence Code,” in Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks, in Q2SWinet ’20. New York, NY, USA: Association for Computing Machinery, Nov. 2020, pp. 1–5. doi: 10.1145/3416013.3426444.
[25] T. Islam and M. N. Uddin, “High Speed OTDM-DWDM Bit Compressed Network for Long-Haul Communication,” AIUB J. Sci. Eng. AJSE, vol. 18, no. 2, Art. no. 2, Aug. 2019, doi: 10.53799/ajse.v18i2.41.
[26] K. Ghoumid et al., “Spectral coded phase bipolar OCDMA technological implementation thanks to low index modulation filters,” Telecommun. Syst., vol. 73, pp. 433–441, Mar. 2020, doi: 10.1007/s11235-019-00610-7.
[27] S. Kaur and S. Singh, “Highly Secured all Optical DIM Codes using AND Gate,” in 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN), Feb. 2020, pp. 64–68. doi: 10.1109/Indo-TaiwanICAN48429.2020.9181369.
[28] A. M. Alhassan, N. Badruddin, N. M. Saad, and S. A. Aljunid, “Theoretical bounds for the bit error rate for SAC OCDMA balanced detectors with multiple photodiodes,” Photonic Netw. Commun., vol. 40, no. 1, pp. 49–57, Aug. 2020, doi: 10.1007/s11107-020-00887-8.
[29] T. Chowdhury and M. N. Uddin, “OCDMA System Using Two Code Keying Encryption Introducing a SOA Based CMUX And CDEMUX Over a WDM System,” AIUB J. Sci. Eng. AJSE, vol. 18, no. 1, Art. no. 1, May 2019, doi: 10.53799/ajse.v18i1.17.
[30] M. Sarkar, S. Sikder, and S. Ghosh, “Transmission Analysis of Designed 2D MWC in Hybrid OCDMA System for Local Area Network Application,” in Optical and Wireless Technologies, M. Tiwari, R. K. Maddila, A. K. Garg, A. Kumar, and P. Yupapin, Eds., in Lecture Notes in Electrical Engineering. Singapore: Springer, 2022, pp. 27–35. doi: 10.1007/978-981-16-2818-4_4.
[31] T. Chakma, “Optical Signal to Noise Ratio \(OSNR\),” pp. 1–5, 2005.
[32] S. A. A. El-Mottaleb, M. Singh, A. Atieh, and M. H. Aly, “OCDMA transmission-based underwater wireless optical communication system: performance analysis,” Opt. Quantum Electron., vol. 55, no. 5, p. 465, Apr. 2023, doi: 10.1007/s11082-023-04742-8.
[33] S. Seyedzadeh, A. Agapiou, M. Moghaddasi, M. Dado, and I. Glesk, “WON-OCDMA System Based on MW-ZCC Codes for Applications in Optical Wireless Sensor Networks,” Sensors, vol. 21, no. 2, Art. no. 2, Jan. 2021, doi: 10.3390/s21020539.
[34] M. N. Uddin and I. S. Bristy, “Performance Analysis of 16-Channel Hybrid WDM- CSRZ-DQPSK PON for Different Transmission Speeds and Distances,” AIUB J. Sci. Eng. AJSE, vol. 19, no. 1, Art. no. 1, Apr. 2020, doi: 10.53799/ajse.v19i1.51.
[35] A. Armghan, M. Alsharari, K. Aliqab, M. Singh, and S. A. Abd El-Mottaleb, “Performance Analysis of Hybrid PDM-SAC-OCDMA-Enabled FSO Transmission Using ZCC Codes,” Appl. Sci., vol. 13, no. 5, Art. no. 5, Jan. 2023, doi: 10.3390/app13052860.
[36] M. Alayedi, C. Abdelhamid, and A. Ferhat, “Performance Enhancement of SAC-OCDMA System using a new Optical Code,” Nov. 2019, pp. 1–4. doi: 10.1109/ISPA48434.2019.8966912.
[37] S. Boukricha, A. Bouzidi, K. Ghoumid, E. M. Ar-Reyouchi, R. Yahiaoui, and O. Elmazria, “Performance Enhancement for m-Sequence and Hadamard Code SAC-OCDMA Systems Based on Narrowband Filters,” Int. J. Wirel. Inf. Netw., vol. 29, pp. 3–13, Sep. 2022, doi: 10.1007/s10776-022-00562-x.
[38] N. Ahmed, S. Aljunid, H. Fadhil, R. B. Ahmad, and M. Rashid, “Performance improvement of SAC-OCDMA system using modified double weight (MDW) code for optical access network,” Sci. Res. Essays, vol. 7, pp. 1–7, Feb. 2012, doi: 10.5897/SRE11.1544.
[39] S. Kumar and B. Ahuja, “Performance of EDW and MDW codes in spectral amplitude coded OCDMA system with SPD,” Opt. Quantum Electron., vol. 53, pp. 2–5, Nov. 2021, doi: 10.1007/s11082-021-03283-2.
[40] R. Md. Noh, M. Mokhtar, Z. Zan, and M. R. C. Beson, “Performance of MS-code of OCDMA over VLC System,” in 2020 IEEE 8th International Conference on Photonics (ICP), May 2020, pp. 58–59. doi: 10.1109/ICP46580.2020.9206474.
[41] W. Sahraoui, H. Aoudia, S. Berrah, A. Amphawan, and R. Naoum, “Performances Analysis of Novel Proposed Code for SAC-OCDMA System,” J. Opt. Commun., vol. 42, no. 3, pp. 491–506, Jul. 2021, doi: 10.1515/joc-2018-0125.
[42] K. Meftah, A. Cherifi, A. Dahani, M. Alayedi, and H. Mrabet, “A performance investigation of SAC-OCDMA system based on a spectral efficient 2D cyclic shift code for next generation passive optical network,” Opt. Quantum Electron., vol. 53, no. 10, p. 569, Sep. 2021, doi: 10.1007/s11082-021-03073-w.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.