
Abstract— This paper introduces an innovative application of 
an Artificial Neural Network (ANN) based model for the 
performance prediction of a power generation gas turbine. this 
approach optimizes the ANN model by utilizing a comprehensive 
database to compare various ANN topologies. Based on 
optimization results, a two-layer Multi-Layer Perceptron (MLP) 
was constructed and used as the best-optimized topology for such 
applications. The training dataset comprises historical 
operational data from a Rolls-Royce (RB21-24G) gas turbine 
unit. Notably, this model shows substantial accuracy for different 
ambient conditions and variable power ratings. Furthermore, a 
sensitivity analysis using various methods was introduced to 
study the impact of each input on the model outputs. To validate 
the model's reliability and novelty, we introduce a degradation 
study, comparing one-year-later on-site operational data with 
predicted values generated by the ANN model. Remarkably, the 
results demonstrate strong consistency between measured data 
and model predictions. 

Index Terms— Artificial neural network, gas turbine, 
performance prediction, system modelling. 

I. INTRODUCTION

ince gas turbines are very important equipment, their
maintenance becomes critical as well. Preventive
maintenance based on equivalent running hours is 

considered costly and time delay factor, which is not favoured 
by such equipment owners. Hence, condition-based 
maintenance becomes more reliable and applied in such 
applications and it becomes of interest to both manufacturers 
and owners of gas turbines [1]. Many approaches have been 
introduced by researchers to develop condition-based 
maintenance theory and application. Monitoring tools that are 
developed using conventional methods depend on heat and 
mass balances and thermodynamical maps etc., are considered 
to be more complicated, general for the specific engine family 
and more measures need to be taken when used for online 
monitoring [2]–[4]. Other approaches were introduced for 
fault diagnostics and system degradation such as studies in[5]–
[8]. 
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The utilization of ANN models to enhance the maintenance 
and performance options was reported in different 
applications[9]–[11]. For instance, the authors  In[12] 
introduced a review of different decision-making methods 
based on information fusion to enhance industrial gas turbine 
diagnostics. These methods were compared in terms of system 
fault detection and isolating, concluding a new perspective of 
a support system for better decision-making. Similarly, the 
authors in[13] propose a transfer-learning-based gas path 
analysis method, the suggested method combines operational 
data with the transfer-learning method in updating the training 
set for the constructed model, this will maintain higher model 
diagnostic accuracy.  

Moreover, new methods using ANN have started to become 
widely used in the field of gas turbine applications due to their 
simplicity, reliability, and specific engine speciality[4]. 
Operational data of the specific engine is only required for 
model construction. This data is used to train the ANN model 
and the corresponding data generated by this model would 
become a healthy condition reference that can be used for 
comparison with actual measurements[14]–[16]. However, the 
issue of lacking data might be an obstacle to constructing a 
reliable ANN model, hence the authors in [17] developed a 
model using simulated faulty engine data to generate data, and 
these data were implemented into the condition monitoring 
system tool. The study shows this model was capable of 
predicting all malfunction cases successfully. In their study 
[10], the authors compared two methods, namely high 
dimensional model representation (HDMR) and artificial 
neural network (ANN), to predict gas turbine performance 
based on operational data. The author suggested using ANN 
for turbine and compressor condition monitoring due to their 
lower construction complexity and higher prediction accuracy. 
Similar work was introduced by [8], [18], [19] to present a 
condition-monitoring tool using ANN that can be used in gas 
turbine condition monitoring. 
In this work, a novel ANN-based method is studied to be 
introduced as the foundation for creating a performance 
monitoring tool applicable to gas turbine systems. Various 
models are compared and investigated to identify the optimal 
topology for the application of gas turbine performance 
studies. This research is built upon operational data obtained 
from an oil and gas production site, where the RB211-24G 
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Fig.1.  Rolls Royce Gas Turbine, RB 211-24 G, (a) Sectional view, (b) General schematic arrangement[20]. 

Fig. 2.  Schematic illustration for NN Model Topology. 

unit is used in generating electrical power for block facilities 
and wellheads. An essential element of this study is the 
introduction of a degradation study using a year-later dataset. 
Any deviation of actual measurements from those predicted by 
the ANN model serves as an indication of potential equipment 
deterioration or faults. The purpose of this study is to express 
the reliability and usefulness of using a model based on the 
ANN method for GT performance prediction and plan 
maintenance activities accordingly.  In the subsequent 
sections, we detail the methodologies used for constructing 
and optimizing our model, discuss the research outcomes, and 
draw conclusions from our findings.  

II. METHODS

A. System Configuration and Data Management

Rolls Royce RB 211 is one of two gen-sets which provides
electrical power to oil field plants, facilities and wellheads. It 
delivers up to 23 MW maximum depending on the load 
required and the ambient conditions, with temperature range 
from 0 to 45 degrees Celsius and humidity between 10 to 
93%. Gas delivered to the turbine is supplied from the central 
gas processing unit under 42 bar inlet pressure as required by 
the turbine design.   This power generator is a three-spool 
engine that consists of a gas generator (GG) and a power 
turbine generator (PT), refer to Fig. 1.  

The gas turbine is composed of a skid-mounted mechanical 

driver system complete with an air intake, filter house and 
plenum chamber. GG's objective is to deliver hot gas under 
the desired pressure and temperature to the gas turbine (GT) 
unit connecting the turbine enclosure and exhaust stack 
housing of the RB211 gas generator and power turbine. 
Hence, the power turbine PT is aerodynamically connected to 
the GG, on the other hand, the electrical generator is coupled 
to the PT mechanically.   

Data has been selected to represent the normal operating 
conditions of GT power generation. Available operational data 
were collected from RB211 Gas Turbine based on an hourly 
rate, about 2199 data points were used, representing two years. 
In data preparation, all off-mode data and outliers were 
excluded. Also, transient periods such as the start-up or 
shutting down of the generator were not included. This will 
ensure that our model will not be disturbed by these 

measurements. After loading all data, cleaning and filtering of 
data were done with NN software tools used for this purpose. 
Randomization of data is required to ensure training will not 
be stuck at a local minimum. Also, to make better distribution 
of data, data is divided into different sets which are training, 
cross-validation and testing. Normalization and 
denormalization of data were also done using the NN software 
during and after the training process. 

Ambient conditions including ambient temperature (Celsius 
degrees), ambient pressure (bar), and ambient humidity 
(percentage, %), were considered as inputs to the ANN model. 
Also, generator active power (MW) was considered as an 
input parameter in the NN model due to its direct effect on all 
other GT output parameters. Moreover, It is very important for 
the oil and gas production facility to optimize gas 
consumption in different processing areas, and to control 
environmental pollutant sources. Therefore, fuel gas 
consumption (kW), was studied as an output to the ANN 
model. Also, exhaust gas temperature (Celsius degrees) was 
considered as an output parameter. Investigating the 
compressor side is of importance to determine the overall 
condition of the GT, so the pressure of low-pressure (LP), and 
high-pressure (HP) compressors, expressed in (bar), and 
Variable Inlet Guide Vanes position (VIGV) was included in 
the output data as well. The basic ANN model configuration is 
illustrated in Fig. 2. 
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Fig. 3.   MSE versus Epoch for training and cross-validation. 

B. Training, Cross-validation and Testing

The process of creating a single model should go through
training, cross-validation and testing. Training and cross-
validation determine weight values.  While training and 
updating these values, cross-validation will behave as a 
supervisor to validate weights. If any deviation happens that 
causes the Mean Square Error (MSE) to increase above the 
setting, the software determines to halt the process and the 
best weight value to be determined, Fig. 3.  

In all cases, iterations were set to (1000). Determination of 
best weights is decided during training, and verified by cross-
validation. 

Results from Fig. 3. show MSE trending during training and 
cross-validation. MSE decreases with iteration (Epoch) 
progress to the final iteration number, where the MSE result 
was about (0.00004 and 0.0008) for training and cross-
validation respectively.  

C. ANN Model Construction

To construct a reliable model, most research on ANN
studied and compared different networks with different 
approaches. Therefore, a variety of network topologies are 
better to be studied using the database with a different number 
of possibilities [21]. In this study, an optimization process is 
conducted to obtain the best NN model for system 
performance prediction. The first step is done by comparing 
three model types used for this purpose, these are Multi-Layer 
Perceptron (MLP), probabilistic Neural Network (PNN) and 
Logistic Regression Neural Network (LRNN). Every 
constructed model is compared using the system average 
prediction error percentage shown in Table 1. 

Comparing MLP, PNN and LRNN configurations 
performance, it is clear that MLP configuration is the best 
from the point of view that it produced the least error 
percentage which is identified by:       

 Where  is the number of output processing elements, 
 is the number of exemplars in the dataset,  is the 

denormalized network output for exemplars i at processing 
element j, and  is the denormalized network desired 
output for exemplars i at processing element j. The second 
step is to optimize and construct the best model topology to 
determine the other parameters such as layers and weighting 
factors. 

D. Performance Measures

The methods used in studying the model prediction accuracy 
are meant to find how close are the predicted values to the 
actual measurements, the closest results the most accurate is 
the model. Therefore, results are studied based on the 
following error-based statistics. The first is the mean square 
error MSE, which can be found by: 

           Where  is the network output for exemplars i at 
processing element j, and  is the network desired output for 
exemplars i at processing element j. 

The normalized root mean squared error is defined by the 
following formula: 

The mean square error (MSE) size is used to find the 
network accuracy, but it doesn't necessarily indicate whether 
data sets move in the same direction. Thus, by simply scaling 
the network output, we can change the  without changing 
the data direction using the correlation coefficient (β). 
Therefore, the correlation coefficient between a network 

TABLE 1: ERROR PERCENTAGE COMPARISON BETWEEN MLP NN, PNN AND LRNN. 

Error% 

Topology Total Fuel 
Demand 

Exhaust Temperature VIGV Actual 
Position 

GG IP Compressor 
Discharge Pressure 

GG H.P. Compressor 
Discharge Pressure 

GG Exhaust 
Pressure 

MLP 0.55 0.55 1.21 0.37 0.17 0.32 
PNN 0.60 0.50 1.46 0.44 0.37 0.55 

LRNN 2.67 1.57 5.66 2.17 1.96 3.17 
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TABLE 2: BEST MODEL (MLP NN) STRUCTURE AND TOPOLOGY. 

Main topology structure MLP NN 

No. of layers 2, (1 hidden layer and 1 output layer) 

perceptron 10 

transfer function tanh 

learning rule RPROP 

max. epochs 1000 

error criterion MSE 

termination determined using cross-validation 

output y and a desired output d is defined by: 

where and are the average values of the network output 
and the network desired output respectively. The correlation 
coefficient is confined to the range [-1,1]. When β =1 there is 
a perfect positive linear correlation between y and d they 
covary, which means that they vary by the same amount. 
When β =-1, there is a perfectly linear negative correlation 
between y and d, that is, they vary in opposite ways (when y 
increases, d decreases by the same amount). When β =0 there 
is no correlation between y and d, i.e., the variables are called 
uncorrelated. Intermediate values describe partial correlations. 
For example, a correlation coefficient β of 0.88 means that the 
fit of the model to the data is reasonably good.  

III. RESULTS AND DISCUSSION

A. Model Optimization

The resulting optimization model was a Multi-Layer
Perceptron with two hidden layers. A score of (97.094) was 
given for the best model, the model number was (696) among 
(781) overall models investigated. The best-recommended
topology is MLP with two layers using the Resilient
Backpropagation (RPROP) learning algorithm, this model has
the criteria listed in Table 2.

The results of the optimum ANN model are shown in Table 
3. The results present the performance table reports including
the mean-squared error (MSE), normalized root-mean-squared
error (NRMSE), mean absolute error (MAE), minimum
absolute error, maximum absolute error, and correlation
coefficient (β) and scores for the predicted output variables.

The results show high correlations β numbers for inputs to 
the output, even though it was moderately less in the Exhaust 
temperature term. Also, error terms show satisfactory values 
relative to the actual data values, this gives us an indication of 

model quality and depending on the statistics, one can 
implement this model for performance predictions.  
The score here gives the reader an indication of all statistical 
numbers included in Table 3. High scores are shown for 
almost all outputs, except for exhaust temperature which 
shows fewer scores but still a very good indication of model 
learning. 

B. Sensitivity Analysis

Sensitivity analysis is a test that aims to measure the
influence and importance of each input parameter on the 
outputs. In this test, neither the model configuration nor the 
topology would be affected. It is based on fixing all input 
parameters while the desired input is changed to study its 
effect on outputs. This is done by two methods in this research 
for robust and reliable results, these methods are: 

1) Sensitivity Analysis Through NN Statistical

This tool is working on the principle of shifting the values
of input slightly and recording the corresponding change in 
output, then reporting this change with reference to standard 
deviation. By default, the first input is varied between its mean 

TABLE  3: BEST ANN MODEL STATISTICAL RESULTS FOR THE MODEL TESTING STEP. 

Performance Total fuel 
demand 

Exhaust temperature VIGV actual 
position 

IP compressor 
discharge pressure 

HP compressor 
discharge pressure 

Exhaust 
pressure 

MSE 874.13 15.030 1.4053 0.0488 0.1081 0.0164 

NRMSE 0.0256 0.0583 0.0486 0.0264 0.0124 0.0129 

MAE 630.57 8.1138 0.9101 0.0319 0.0587 0.0087 

NAME 0.0185 0.0314 0.0314 0.0173 0.0067 0.0068 

Min Abs. Err. 11.480 0.0195 0.0014 0.0003 0.0027 6.1E-06 

Max Abs. Err. 4046.3 61.094 4.6115 0.1825 0.9157 0.1316 

β 0.9630  0.8098 0.9337 0.9349 0.9875 0.9877 

Score 95.865 87.137 93.577 94.446 97.794 97.779 
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TABLE 6: MLP PREDICTION ERRORS. 

Error % 

Fuel demand Exhaust temperature VIGV actual 
position 

IP compressor 
discharge pressure 

HP compressor 
discharge pressure 

Exhaust pressure 

Max. 8.5 7.4 23.2 8.2 3.6 5.1 

Min. 1.4E-07 2.0E-4 1.0E-3 5.0E-4 4.0E-4 2.0E-4 

Average 0.6 0.5 1.2 0.4 0.2 0.3 

(±) and a user-defined number (i.e. 0.1) about the mean value 
while all other inputs are fixed at their respective means, and 
then the corresponding deviation in outputs is calculated. 
Table 4 shows the sensitivity statistics of all outputs due to all 
inputs produced by the ANN model.  

The result in Table 4 shows that the sensitivity of all 
outputs to generator active power is the highest, where the 
numbers show higher values of the standard deviation. 
Similarly, the sensitivity of all outputs to ambient air pressure 
comes second, and then the sensitivity of all outputs to 
ambient air temperature and ambient air humidity comes last.    

2) Tool Sensitivity analysis by excluding inputs

This test provides a logical analysis of input influence on
outputs, if one input is removed then a model is constructed 
using the rest of the inputs. The significance of this removed 
input will be reflected in error values generated at the output. 
The larger the error, the bigger the influence of this input and 
vice versa. In this part, five models are to be constructed. 

One model, the reference model, is constructed with all 
inputs included. The other four models were constructed with 
one input removed at a time to represent the effect of 
excluding one of the original four inputs. The resulting 

predictions of each model are compared to actual 
measurements to find the corresponding error. Then the errors 
will be compared with reference model errors. Thus, one can 
determine which parameter has the biggest impact on output 
variables, Table 5. 

C. GT Performance Prediction

  GT first-year operational data was used to study the 
ability of the MLP-NN model to predict GT performance. 
Statistical results for the best MLP model prediction errors are 
presented in Table 6. Also, the predicted values by the ANN 

model, actual values and prediction error of different 
parameters are shown in Fig. 4.  

It can be seen from both Table 6 and Figure 4, that the 
predicted fuel demand is very close to the actual fuel demand 
where the average error percentage was about 0.6%. Similarly, 
all other parameters show relatively small values of the 
percentage error ranging between (0.2-0.6 %), while the 
highest error value was 1.2 % for the VIGV position. The 
average error percentages from this model are acceptable for 
all parameters (less than unity), even though still slightly high 
for Valve Inlet Guide Vanes (VIGV).  

TABLE 4: SENSITIVITY ANALYSIS THROUGH NN SOFTWARE, STANDARD DEVIATION VALUES. 
Sensitivity Parameter Fuel demand Exhaust 

temperature 
VIGV actual 
position 

IP compressor 
discharge pressure 

HP compressor 
discharge pressure 

Exhaust 
pressure 

Ambient air temp. (0c) 300.567 9.62160 0.2082 0.0151 0.0765 0.0104 

Ambient air pressure (bar) 1210.12 35.6710 0.4688 0.0420 0.0620 0.0561 

Ambient air humidity (%) 80.1191 4.95960 0.2737 0.0019 0.0048 0.0010 

Generator active power 
(kW) 

5378.39 31.7449 7.9985 0.3466 1.4921 0.2277 

TABLE 5: SENSITIVITY ANALYSIS BY EXCLUDING INPUTS, ERROR DIFFERENCE % AVERAGE. 
Excluded Input Fuel 

Demand 
Exhaust 
Temperature 

VIGV Actual 
Position 

IP Compressor 
Discharge Pressure 

HP Compressor 
Discharge pressure 

Exhaust Pressure 

Ambient Air Temp. 
(0c) 

0.467912 0.714733 0.879418 0.251124 0.300128 0.373305 

Ambient Air Pressure 
(bar) 

0.447455 0.647371 1.000381 0.252298 0.235971 0.305363 

Ambient Air Humidity 
(%) 

0.454350 0.479682 0.979013 0.325943 0.149498 0.226615 

Generator Active 
Power (kW) 

1.286848 0.640851 3.570723 0.669770 0.899850 0.945075 
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Fig. 4.   MLP NN model Prediction VS actual results for a) Fuel Demand (kW), b)VIGV Position, c)HP Discharge Pressure, d)IP Discharge Pressure, 
e)Exhaust Pressure, and Exhaust Temperature.

Therefore, the analytical values presented show the ability 
of MLP prediction for all output data, although some points 
show bigger deviations, on average, all values were small. 

D. GT Degradation

GT second-year operational data was used to study the
prediction of system degradation that happened due to 
different operating conditions.  

This study is an overall prediction of the whole system and 
does not study specific component deterioration. The principle 
is to feed the data of the second year into the model 
constructed with data of a healthy first year for prediction. 
This model is used as a reference to the system's normal 
healthy performance. The calculated percentage errors are due 
to the difference between the healthy data and operational data 
of the second year, as shown in Table 7.   

TABLE 7: RB211-24G DEGRADATION PREDICTION, THROUGH COMPARISON OF AVERAGE MSE[%] RESULTS FROM MLP NN MODEL FOR THE FIRST AND 
SECOND YEAR. 

Fuel demand Exhaust temperature VIGV actual 
position 

IP compressor discharge 
pressure 

HP compressor discharge 
pressure 

Exhaust 
pressure 

After the first year 

0.5518 0.5491 1.2056 0.3714 0.1735 0.3185 

  1st Half of the second year 

0.4622 0.5413 2.1690 0.7437 0.6418 0.4278 

   2nd Half of the second year 

0.5686 0.7073 3.1171 0.7828 0.6783 0.4510 
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Fig. 5.   Degradation Study, a) Fuel Demand [kW], b) IP compressor 
discharge pressure  [bar] and c) HP compressor discharge pressure  [bar]. 

Table 7 shows a comparison between error percentages 
that occurred from the model based on the first-year and 
second-year data separately. Second-year data was divided 
into two halves, first and second, thus degradation can be 
better illustrated.  

The results from Table 7 show a slight difference in 
general, although it shows almost double the value or more for 
IP compressor discharge pressure and six times HP 
compressor discharge pressure compared to the health values 
in the first year. Hence, a possible explanation for these values 
could be the presence of compressor fouling and this could 
lead to deciding on compressor wash to reduce this deviation.  
representation of the error difference between actual and 
predicted results for three parameters namely, fuel demand IP 
and HP compressor pressure are shown in Figure 5. 

In Figure 5a the graph shows fuel demand actual and 
predicted values of the second year against Power. It is shown 
that values are good within the error shown in Table 7. 
Similarly, Figure 5b represents IP compressor discharge 
pressure, actual and predicted values of the second year 
against Power. It is shown that the IP compressor discharge 
pressure is overpredicted explaining the large errors, In Figure 
5c Hp compressor discharge pressure, actual and predicted 
values of the second year against Power are presented. It is 
shown that the HP compressor discharge pressure is 
overpredicted explaining the large errors shown in Table 7. 

IV. CONCLUSION

This research was mainly dedicated to achieving two 
objectives. First, presents a development study that concerns 
the optimization of the ANN-based model to be used in GT 
performance prediction. Second, investigate the proposed 
model for performance predictability. The prediction ability of 
the optimised ANN-based model proved to be reliable and 
convenient for all studied parameters. Different statistical 
values were introduced and almost all results were promising 
and convenient. Also predicted results showed a high 
correlation with the actual measurements. 

Sensitivity analysis was introduced to measure the 
importance of different inputs to the desired outputs. This 
way, the results give an indication of which parameter is 
effective and which one is less. Also, this showed that other 
parameters could be involved in construction if available for 
better prediction capability.   Then a degradation study of GT 
was introduced using data from the first and second GT’s 
operation years. Results of the second-year prediction show 
little deviation from that of the first which is considered a 
healthy condition reference. It was mostly the compressor side 
that showed noticeable change. This could be due to 
compressor fouling for which compressor washing could be 
advised, or for any other possible reasons such as clogged 
filters. 
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