
 
Abstract—A new mathematical framework is proposed in this 

study to comprehend the impact of program architecture on 
input random variables, the IF statement was the main topic. The 
primary idea that is theoretically and experimentally supported 
in this study is that the part of the joint pmf of a collection of 
random variables that represents the condition will be shifted to 
the part that represents the action. After sorting two random 
variables, the framework is used with four random variables, and 
the theoretically produced results were realistically validated. 
The study's equations can be applied to assessing probabilistic 
models of various sorting algorithms or other intricate program 
structures. This may also result in future investigations 
formalizing more precise execution time expectations. 

Index Terms—Sorting Function, Random Variables, Program 
Structure, Execution Time.  

I. INTRODUCTION

HE life cycle of software development includes a
crucial activity called software testing. It aids in boosting 

a developer's confidence that a program accomplishes its 
goals. To put it another way, we can say that it is a process of 
running a program with the goal of identifying faults [1-2]. 

The automotive, avionics, health care, and consumer 
electronics industries are just a few examples of the 
application domains for embedded computing systems, in 
addition to functional accuracy, the safety-critical systems 
used in the automotive, avionics, and healthcare industries 
also require good time predictability. For such complex real-
time systems with numerous concurrent processes, traditional 
schedulable analytic techniques can ensure the satisfiability of 
temporal restrictions [3-4]. 

The Worst-Case Execution Time (WCET) of each task is a 
crucial element needed for the schedulability analysis. A task's 
maximum execution time (WCET) on a target processor is 
determined by all potential inputs. The contemporary design 
trend of embedded applications necessitates the analysis and 
optimization of performance and power in all the system's 
components, particularly in the early design stages when 
several solutions are contrasted. The need of a quick 
examination of the program, performed across the full 
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development/compilation phase, especially from the source 
level down to the assembly, is being reinforced by the current 
pervasiveness of microprocessor-based architectures, to this 
end, the subject of establishing limits on the processing time 
of a process running on a microprocessor was examined in 
several research publications [5-7]. 
Unfortunately, given the capabilities of the present Processor, 
this work is getting harder and harder. Because the target 
application is frequently real-time constrained, several 
analyses approached the issue at a coarse granularity, 
concentrating primarily on the WCET (Worst Case Execution 
Time). The issue generally has two sides; the first is analyzing 
the program routes to find out which instructions will be 
executed and how they will affect the WCET, while the 
second is micro-architectural analysis, or modeling of the 
hardware system running the software [6-7]. The authors in 
[8] suggested a technique for obtaining probabilistic
distributions of execution durations using static analysis. It
was assumed that the real-time program in question is broken
up into a number of jobs, each of whose source code is known.
The suggested approach enables designers to correlate every
execution path with an execution time and a probability that it
will follow that path, disregarding hardware issues in this
study and basing their decisions solely on the source code of
the jobs. A source code example was provided to show how
the technique works. Similarly, the research in [9] had
modeling attempts for the instruction cache. To simulate the
evolution of cache content during program execution over a
variety of inputs, they developed the concept of probabilistic
cache states. The experimental assessment supported the
probabilistic cache modeling approach's scalability and
correctness.

II. METHODOLOGY

A. Mathematical Background

Assuming a discrete random variable  with probability mass 
function (pmf)  as [10]: 

 (1) 
Also in order to progress in mathematical evaluation, 
additional assumption is made by considering the domain of 

 to be n integers from 0 to (n-1). In this case the pmf of 
can be written as [11]: 

 (2)  
Where  is the unit impulse function defined as [12]: 

T 
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(3) 

In addition to that Cumulative Distribution Function (cdf) is 
defined as [10]: 

 (4)  
The last assumption here is the uniform distribution of all 
random variables under study with initial independence. 
Applying this assumption to eq(4), can yield the following 
equations: 

(5) 
(6) 

Also the cdf can be evaluated to be: 
 (7) 

It is required in this research to evaluate theoretically the 
probability mass function  after passing the random 
variable  in if statement and sort function. 

B. Simple IF Statement Influence

The first and simplest program structure to be examined is 
with simple if statement with a condition that matches the 
value of the random variable with a constant “a” then take an 
action to assign the constant “b” to if the condition is True. 
The code in python is shown in Fig (1). The samplesize refers 
to number of samples that ae generated for each random 
variable. 
for c in range(samplesize): 
    if (X[1,c] = =a): 
        X[1,c]=b 

Figure 1 The python code for simple IF statement with constant 
matching condition. 

The argument here is that the occurrence of  will be 
eliminated and its probability will be shifted to  so the 
new pmf  can be theoretically calculated as: 

   (8) 
From above discussion, the following theorem can be 
concluded: 
Theorem: Applying IF Statement on a single discrete random 
variable will result in shifting the value of the probability mass 
function from the condition range to the action range. 

C. IF Statement with Less-Than Condition Influence

The next program structure to be examined is an IF statement 
with a condition that matches the values of the random 
variable less than a constant “a” then take an action to assign 
the constant “b” to , if the condition is True. The code in 
python is shown in Fig (2). 

for c in range(samplesize): 
    if (X[1,c] <a): 
        X[1,c]=b 

Figure 2 The python code for IF statement with less than 
condition. 

The argument here is that the occurrence of  will be 
eliminated and its probability (which is in this case can be 
expressed by the cdf) will be shifted to  so the new pmf 

 can be theoretically calculated as below: 

(9) 
Assuming the range from 0 to (n-1) will generate below: 

 (10) 
After applying the uniform distribution assumption: 

(11) 

D. Sorting of Two Random Variables

The more complicated program structure to be examined is 
when IF statement condition consists of two independent 
random variables  and  . The typical example here is 
when it is required to sort two variables, ie to check if  is 
larger than  then swap the two values, which results that 
to be always greater or equal to  . 
The python code that can implement this operation is shown in 
Fig (3). The variable temp1 is used as a swap variable. 
for c in range(samplesize): 
    if (X1[c] > X2[c]): 
        temp1=X1[c] 
        X1[c] = X2[c]  
        X2[c] = temp1 

Figure 3 The python code for sorting two random variables. 

In order to find the individual pmfs of  and  before and 
after passing through the code, it is needed to resite the laws of 
joint probability of independent events A and B [13]: 

(12) 

  (13) 
Also this can be expanded to multiple d events (where d here 
is the dimension or the number of random variables): 

 (14) 

 (15) 
In order to calculate the joint pmf of the two independent 
random variables  and , then from eq(12) and eq(6), it 
can be conluded that: 
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(16) 

(17) [10]
The theoretical plot for joint pmf described in eq (17) is shown 
in Fig(4a). 
Then to analyze the influence of sorting function, it is needed 
to find out the joint pmf after passing through the sorting 
function, then evaluate the marginal pmf of each random 
variable. The new joint pmf can be derived with the same 
discussion used in section 2.3 , and by generalizing Theorem 1 
to bivariate joint pmf, the joint pmf for the area  that 
makes the if condition true will be shifted to the area of the 
action , exactly in the revesred sequence of the two 
variables. This discussion will result into the below equation:  

  (18) 
Therefore, if the two random variables assume uniform 
distribution for the range from 0 to (n-1), then new joint pmf 
resulting from the sorting function can be expressed as: 

(19) 

or alternatively: 

(20) 

Considering the two random independent variables  and  
are ranging from 0 to n-1 with uniform pmf, then the plot for 
this new joint pmf is shown in Fig(4b). 
In order to be able to compare the theoretical and practical 
evaluations of the influence of the various program structures, 
it is required to evaluate the individual pmf of each random 
variable. This pmf is called marginal pmf and it is defined in 
theorem 4.3 from [14] as: 
Theorem: For discrete random variable X and Y with joint 
pmf  , 

 ,   

(a) 

(b) 
Figure 4 The joint pmf of two random variables for n=30 (a) 

before sorting function and (b) after sorting function. 

From this theorem and if both variables are ranging from 0 to 
(n-1), then it can be concluded that: 

(21) 
 (22) 

So in order to calculate the individual pmfs for both random 
variables, eq(20) and eq(19) can be substituted in eq(21) and 
eq(22) respectively: 

(23) 

  (24) 

  (25) 

(26) 
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(a) 

def SortRV(L,S)  
#L=Large Variable after sort 
#S=Small Variable after sort 
    for c in range(samplesize): 
        if (X[S,c] > X[L,c] ): 
             temp1=X[S,c]  
             X[S,c]  = X[L,c]   
             X[L,c]  = temp1 
      Calculate_New_PMFs() #Theoritically 
      Measure_New_PMFs() # Practically  
      Plot_New_PMFs() #Both Theoritical and 
Practical 
#Code Stage 1 
SortRV(2,1) 
SortRV(4,3) 
#Code Stage 2 
SortRV(3,1) 
SortRV(4,2) 
#Code Stage 3 
SortRV(3,2) 

(b) 
Figure 5  (a) The algorithm for sorting four random variables (b) 

Python code for sorting four random variables. 

E. Sorting Code for Four Random Variables 

Further advance in this study is the discussion of the algorithm 
to sort four independent random variables , ,  and  . 
In this case five calls to sorting function should be used as 
illustrated in the algorithm shown in Fig (5a) and the Python 
code shown in Fig (5b). The results will satisfy the 
mathematical inequality: 

 
Using the same argument used in section (2.4) for multiple d 
independent uniformly distributed random variables, it can be 
concluded that: 

   
 (27) 

  (28) 
 

Eq(27) represents the initial values that can be assigned to the 
joint pmf before starting the experiment with d random 
variables. The joint pmf here is defined as d dimensional 
matrix. 
Then to analyze the influence of sorting code of the four 
variables, it is needed to find out the joint pmf after passing 
through single sorting function, then evaluate the marginal 
pmf of each individual random variable. The new joint pmf 
can be derived with the same discussion used in section 2.3, 
and by generalizing Theorem 1 to multivariate joint pmf, the 
joint pmf for the d-dimensional region  that makes the 
IF condition true will be shifted to the d-dimensional region of 
the action , exactly in the reversed sequence of the 
two variables. This discussion will result into the below 
equation:  

 (29) 
 

  
 (30) 
Eq (29) and eq (30) are the final theoretical conclusion of this 
study, on which they can be utilized to calculate the new joint 
pmf each time the sorting function is used to sort two random 
variables irrelevant of the sorting stage. In results section trials 
will be done to validate practically those equations which 
should work even with the existence of dependency between 
the two sorted variables after passing multi-tier sorting stages. 
F. Procedures for the Measurement of Practical pmf 

In order to implement those tests, a samplesize=1000000 is 
used to generate different values of each random variable 
under study and store them into a two-dimensional matrix [d, 
samplesize]. This matrix is considered to be the input of the 
experiment. The practical pmf of each variable is calculated 
by counting the occurrence of each value and dividing it by 
the sample size. Plot for both theoretical and practical results 
are combined for easy comparison. After passing each 
program structure a new pmf is evaluated theoretically using 
the relative mathematical equation and practically by counting 
the occurrence of the values in the range 0 to (n-1) in the same 
matrix. Again, unified plot is made after each stage. The 
summary of the methodology was included in the Fig (6). 
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Figure 6 Summary of the study methodology. 

III. RESULTS  
In this section a comparison and validation of the plot of the 
theoretical equations obtained in the Methodology sections 
will be conducted against practical measurement of individual 
pmfs.  
 
A. Simple IF Statement with Equality Condition Results 

The results of passing a single random variable through simple 
IF statement with equality condition for the code depicted in 
Fig (1) with value of a=3 and b=10 is shown in Fig(7). As 
indicated in Theorem 1, the pmf value of the condition range 

 is accumulated over the pmf of the action range 
 . In the plotted results indicate practical 

measurement matches theoretical evaluations. 
 
B. IF Statement with Less than Operation Results 

Continuing in the same discussion, the results of passing a 
single random variable through an IF statement with less than 
condition for the code of Fig(2) with value of a=3 and b=10 is 
shown in Fig(8). In this case the pmf values of the condition 
range  which can be represented by cdf is 
added over the pmf of the action range  . Again, the 
plotted results indicate perfect matching between practical 
measurement matches theoretical evaluations. 
 

C. Results for Sorting Two Variables 

The experiment of sorting two variables is more complex than 
a conditional statement with single variable since the study 
interaction between the two variables requires analyzing the 
joint pmf of the two variables before and after the sorting 
code. In section 2.4 an argument was made for the calculation 
of the joint pmf and from it the equation for the marginal pmfs 
where derived in eq (24) and eq (26). Both equations were 
plotted in Fig (9b). The plot shows excellent matching with 
practical pmfs obtained by counting the values after passing 
through the sorting code, which validates the joint pmf 
calculation along with marginal pmfs derived from it. The 
behavior of the curves is fitting the rule of each variable so the 
pmf of the small variable  is tending towrd the minimum 
value 0, while the pmf of the large variable  is tending 
toward the maximum (n-1). From other side, it can be noticed 
that the sorting of two variables has produced two mirrored 
pmfs around the Y-axis.  
 
D. Results of Sorting Code for Four Random Variables 

In Fig (10) the results of sorting two sets of two random 
variables carry no additional news out of the sorting of two 
variables discussed in section 3.3 After passing the four 
random variables in Code Stage 2 where  and  are sorted 
so the output will force . In this case  will be 
assured to hold the least value among the four variables as it 
was illustrated in Fig(5a). The mathematical evaluation of the 
pmfs of  and  is based on repeated use of eq (29) and eq 
(30). Similar discussion can be conducted for the sorting  
and  so the output will force , forcing  to hold the 
greatest value among the four variables as it was illustrated in 
the algorithm in Fig(5a) also. The results of Code Stage 2 are 
show in Fig (11). The final sorting stage is done between  
and  to assure that . The results are shown in Fig 
(12). Fig (12) will repeate with any kind of additional sorting 
is forced between any pair of the random variables which 
indicates that this Figure represents the last results and no 
further sorting can be done. The graphs depict mirrored image 
of each other like the discussion in section 3.3.  
 
 

 
 

(a) (b) 
Figure 7 The pmf of X1(a) before IF statement with equality 

condition and n=30 (b) after the IF statement 

 

AJSE Volume 22, Issue 3, Page 271 - 278 Page 275



 

  
(a) (b) 

Figure 8 The pmf of X1(a) before IF statement with less than 
condition (b) after the IF statement 

 

 

 

 
(a) 

 
(b) 

Figure 9The pmf of the two random variables for n=30 (a) before 
the sorting code (b) after sorting code. 

 

 
 

(a) 
 

 
 

(b) 
Figure 10. Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 1: SortRV(2,1), SortRV(4,3). 
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Figure 11 Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 2: SortRV(3,1), SortRV(4,2) 

 
Figure 12 Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 3: SortRV(3,2). 

 

IV. CONCLUSION 

This research suggests a new mathematical framework to 
understand the influence of the program structures on input 
random variables. The focus was on IF statement. The main 
principle validated in this paper theoretically and practically is 
that the portion of joint PMF of set of random variables that 
represents the condition will be shifted and added with portion 
that stands for the action. The framework is applied on sorting 
two random variables and then on four random variables and 
the theoretical obtained results were validated practically. The 
equations derived in this study can be useful in evaluating 
probabilistic model of various sorting algorithms or other 
complex program structures. Additionally, this can lead in 
formalizing more exact execution time expectation in future 
studies  
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