

Abstract—A new mathematical framework is proposed in this

study to comprehend the impact of program architecture on
input random variables, the IF statement was the main topic. The
primary idea that is theoretically and experimentally supported
in this study is that the part of the joint pmf of a collection of
random variables that represents the condition will be shifted to
the part that represents the action. After sorting two random
variables, the framework is used with four random variables, and
the theoretically produced results were realistically validated.
The study's equations can be applied to assessing probabilistic
models of various sorting algorithms or other intricate program
structures. This may also result in future investigations
formalizing more precise execution time expectations.

Index Terms—Sorting Function, Random Variables, Program
Structure, Execution Time.

I. INTRODUCTION

HE life cycle of software development includes a
crucial activity called software testing. It aids in boosting

a developer's confidence that a program accomplishes its
goals. To put it another way, we can say that it is a process of
running a program with the goal of identifying faults [1-2].

The automotive, avionics, health care, and consumer
electronics industries are just a few examples of the
application domains for embedded computing systems, in
addition to functional accuracy, the safety-critical systems
used in the automotive, avionics, and healthcare industries
also require good time predictability. For such complex real-
time systems with numerous concurrent processes, traditional
schedulable analytic techniques can ensure the satisfiability of
temporal restrictions [3-4].

The Worst-Case Execution Time (WCET) of each task is a
crucial element needed for the schedulability analysis. A task's
maximum execution time (WCET) on a target processor is
determined by all potential inputs. The contemporary design
trend of embedded applications necessitates the analysis and
optimization of performance and power in all the system's
components, particularly in the early design stages when
several solutions are contrasted. The need of a quick
examination of the program, performed across the full

Alaa Ghazi is with Department of Information Technology, Tishk
International University, Kurdistan Region, 44001, Erbil, Iraq. (e-mail:
alaa.ghazi@tiu.edu.iq).

Yasir Hashim is with Department of Computer Engineering, Tishk
International University, Kurdistan Region, 44001, Erbil, Iraq (e-mail:
yasir.hashim@tiu.edu.iq).

development/compilation phase, especially from the source
level down to the assembly, is being reinforced by the current
pervasiveness of microprocessor-based architectures, to this
end, the subject of establishing limits on the processing time
of a process running on a microprocessor was examined in
several research publications [5-7].
Unfortunately, given the capabilities of the present Processor,
this work is getting harder and harder. Because the target
application is frequently real-time constrained, several
analyses approached the issue at a coarse granularity,
concentrating primarily on the WCET (Worst Case Execution
Time). The issue generally has two sides; the first is analyzing
the program routes to find out which instructions will be
executed and how they will affect the WCET, while the
second is micro-architectural analysis, or modeling of the
hardware system running the software [6-7]. The authors in
[8] suggested a technique for obtaining probabilistic
distributions of execution durations using static analysis. It
was assumed that the real-time program in question is broken
up into a number of jobs, each of whose source code is known.
The suggested approach enables designers to correlate every
execution path with an execution time and a probability that it
will follow that path, disregarding hardware issues in this
study and basing their decisions solely on the source code of
the jobs. A source code example was provided to show how
the technique works. Similarly, the research in [9] had
modeling attempts for the instruction cache. To simulate the
evolution of cache content during program execution over a
variety of inputs, they developed the concept of probabilistic
cache states. The experimental assessment supported the
probabilistic cache modeling approach's scalability and
correctness.

II. METHODOLOGY

A. Mathematical Background

Assuming a discrete random variable with probability mass
function (pmf) as [10]:

 (1)
Also in order to progress in mathematical evaluation,
additional assumption is made by considering the domain of

 to be n integers from 0 to (n-1). In this case the pmf of
can be written as [11]:

 (2)
Where is the unit impulse function defined as [12]:

T

AIUB JOURNAL OF SCIENCE AND ENGINEERING
ISSN: 1608 – 3679 (print) 2520 – 4890 (Online)

Published in AJSE, Vol:22, Issue: 3
Received on 25th July 2023

Revised on 16th October 2023
Accepted on 3rd December 2023

Probabilistic Modeling for Conditional
Statements

Alaa Ghazi Abdulbaqi, and Yasir Hashim, Senior Member, IEEE

AJSE Volume 22, Issue 3, Page 271 - 278 Page 271

(3)

In addition to that Cumulative Distribution Function (cdf) is
defined as [10]:

 (4)
The last assumption here is the uniform distribution of all
random variables under study with initial independence.
Applying this assumption to eq(4), can yield the following
equations:

(5)
(6)

Also the cdf can be evaluated to be:
 (7)

It is required in this research to evaluate theoretically the
probability mass function after passing the random
variable in if statement and sort function.

B. Simple IF Statement Influence

The first and simplest program structure to be examined is
with simple if statement with a condition that matches the
value of the random variable with a constant “a” then take an
action to assign the constant “b” to if the condition is True.
The code in python is shown in Fig (1). The samplesize refers
to number of samples that ae generated for each random
variable.
for c in range(samplesize):
 if (X[1,c] = =a):
 X[1,c]=b

Figure 1 The python code for simple IF statement with constant
matching condition.

The argument here is that the occurrence of will be
eliminated and its probability will be shifted to so the
new pmf can be theoretically calculated as:

 (8)
From above discussion, the following theorem can be
concluded:
Theorem: Applying IF Statement on a single discrete random
variable will result in shifting the value of the probability mass
function from the condition range to the action range.

C. IF Statement with Less-Than Condition Influence

The next program structure to be examined is an IF statement
with a condition that matches the values of the random
variable less than a constant “a” then take an action to assign
the constant “b” to , if the condition is True. The code in
python is shown in Fig (2).

for c in range(samplesize):
 if (X[1,c] <a):
 X[1,c]=b

Figure 2 The python code for IF statement with less than
condition.

The argument here is that the occurrence of will be
eliminated and its probability (which is in this case can be
expressed by the cdf) will be shifted to so the new pmf

 can be theoretically calculated as below:

(9)
Assuming the range from 0 to (n-1) will generate below:

 (10)
After applying the uniform distribution assumption:

(11)

D. Sorting of Two Random Variables

The more complicated program structure to be examined is
when IF statement condition consists of two independent
random variables and . The typical example here is
when it is required to sort two variables, ie to check if is
larger than then swap the two values, which results that
to be always greater or equal to .
The python code that can implement this operation is shown in
Fig (3). The variable temp1 is used as a swap variable.
for c in range(samplesize):
 if (X1[c] > X2[c]):
 temp1=X1[c]
 X1[c] = X2[c]
 X2[c] = temp1

Figure 3 The python code for sorting two random variables.

In order to find the individual pmfs of and before and
after passing through the code, it is needed to resite the laws of
joint probability of independent events A and B [13]:

(12)

 (13)
Also this can be expanded to multiple d events (where d here
is the dimension or the number of random variables):

 (14)

 (15)
In order to calculate the joint pmf of the two independent
random variables and , then from eq(12) and eq(6), it
can be conluded that:

AJSE Volume 22, Issue 3, Page 271 - 278 Page 272

(16)

(17) [10]
The theoretical plot for joint pmf described in eq (17) is shown
in Fig(4a).
Then to analyze the influence of sorting function, it is needed
to find out the joint pmf after passing through the sorting
function, then evaluate the marginal pmf of each random
variable. The new joint pmf can be derived with the same
discussion used in section 2.3 , and by generalizing Theorem 1
to bivariate joint pmf, the joint pmf for the area that
makes the if condition true will be shifted to the area of the
action , exactly in the revesred sequence of the two
variables. This discussion will result into the below equation:

 (18)
Therefore, if the two random variables assume uniform
distribution for the range from 0 to (n-1), then new joint pmf
resulting from the sorting function can be expressed as:

(19)

or alternatively:

(20)

Considering the two random independent variables and
are ranging from 0 to n-1 with uniform pmf, then the plot for
this new joint pmf is shown in Fig(4b).
In order to be able to compare the theoretical and practical
evaluations of the influence of the various program structures,
it is required to evaluate the individual pmf of each random
variable. This pmf is called marginal pmf and it is defined in
theorem 4.3 from [14] as:
Theorem: For discrete random variable X and Y with joint
pmf ,

 ,

(a)

(b)
Figure 4 The joint pmf of two random variables for n=30 (a)

before sorting function and (b) after sorting function.

From this theorem and if both variables are ranging from 0 to
(n-1), then it can be concluded that:

(21)
 (22)

So in order to calculate the individual pmfs for both random
variables, eq(20) and eq(19) can be substituted in eq(21) and
eq(22) respectively:

(23)

 (24)

 (25)

(26)

AJSE Volume 22, Issue 3, Page 271 - 278 Page 273

(a)

def SortRV(L,S)
#L=Large Variable after sort
#S=Small Variable after sort
 for c in range(samplesize):
 if (X[S,c] > X[L,c]):
 temp1=X[S,c]
 X[S,c] = X[L,c]
 X[L,c] = temp1
 Calculate_New_PMFs() #Theoritically
 Measure_New_PMFs() # Practically
 Plot_New_PMFs() #Both Theoritical and
Practical
#Code Stage 1
SortRV(2,1)
SortRV(4,3)
#Code Stage 2
SortRV(3,1)
SortRV(4,2)
#Code Stage 3
SortRV(3,2)

(b)
Figure 5 (a) The algorithm for sorting four random variables (b)

Python code for sorting four random variables.

E. Sorting Code for Four Random Variables

Further advance in this study is the discussion of the algorithm
to sort four independent random variables , , and .
In this case five calls to sorting function should be used as
illustrated in the algorithm shown in Fig (5a) and the Python
code shown in Fig (5b). The results will satisfy the
mathematical inequality:

Using the same argument used in section (2.4) for multiple d
independent uniformly distributed random variables, it can be
concluded that:

 (27)

 (28)

Eq(27) represents the initial values that can be assigned to the
joint pmf before starting the experiment with d random
variables. The joint pmf here is defined as d dimensional
matrix.
Then to analyze the influence of sorting code of the four
variables, it is needed to find out the joint pmf after passing
through single sorting function, then evaluate the marginal
pmf of each individual random variable. The new joint pmf
can be derived with the same discussion used in section 2.3,
and by generalizing Theorem 1 to multivariate joint pmf, the
joint pmf for the d-dimensional region that makes the
IF condition true will be shifted to the d-dimensional region of
the action , exactly in the reversed sequence of the
two variables. This discussion will result into the below
equation:

 (29)

 (30)
Eq (29) and eq (30) are the final theoretical conclusion of this
study, on which they can be utilized to calculate the new joint
pmf each time the sorting function is used to sort two random
variables irrelevant of the sorting stage. In results section trials
will be done to validate practically those equations which
should work even with the existence of dependency between
the two sorted variables after passing multi-tier sorting stages.
F. Procedures for the Measurement of Practical pmf

In order to implement those tests, a samplesize=1000000 is
used to generate different values of each random variable
under study and store them into a two-dimensional matrix [d,
samplesize]. This matrix is considered to be the input of the
experiment. The practical pmf of each variable is calculated
by counting the occurrence of each value and dividing it by
the sample size. Plot for both theoretical and practical results
are combined for easy comparison. After passing each
program structure a new pmf is evaluated theoretically using
the relative mathematical equation and practically by counting
the occurrence of the values in the range 0 to (n-1) in the same
matrix. Again, unified plot is made after each stage. The
summary of the methodology was included in the Fig (6).

AJSE Volume 22, Issue 3, Page 271 - 278 Page 274

Figure 6 Summary of the study methodology.

III. RESULTS
In this section a comparison and validation of the plot of the
theoretical equations obtained in the Methodology sections
will be conducted against practical measurement of individual
pmfs.

A. Simple IF Statement with Equality Condition Results

The results of passing a single random variable through simple
IF statement with equality condition for the code depicted in
Fig (1) with value of a=3 and b=10 is shown in Fig(7). As
indicated in Theorem 1, the pmf value of the condition range

 is accumulated over the pmf of the action range
 . In the plotted results indicate practical

measurement matches theoretical evaluations.

B. IF Statement with Less than Operation Results

Continuing in the same discussion, the results of passing a
single random variable through an IF statement with less than
condition for the code of Fig(2) with value of a=3 and b=10 is
shown in Fig(8). In this case the pmf values of the condition
range which can be represented by cdf is
added over the pmf of the action range . Again, the
plotted results indicate perfect matching between practical
measurement matches theoretical evaluations.

C. Results for Sorting Two Variables

The experiment of sorting two variables is more complex than
a conditional statement with single variable since the study
interaction between the two variables requires analyzing the
joint pmf of the two variables before and after the sorting
code. In section 2.4 an argument was made for the calculation
of the joint pmf and from it the equation for the marginal pmfs
where derived in eq (24) and eq (26). Both equations were
plotted in Fig (9b). The plot shows excellent matching with
practical pmfs obtained by counting the values after passing
through the sorting code, which validates the joint pmf
calculation along with marginal pmfs derived from it. The
behavior of the curves is fitting the rule of each variable so the
pmf of the small variable is tending towrd the minimum
value 0, while the pmf of the large variable is tending
toward the maximum (n-1). From other side, it can be noticed
that the sorting of two variables has produced two mirrored
pmfs around the Y-axis.

D. Results of Sorting Code for Four Random Variables

In Fig (10) the results of sorting two sets of two random
variables carry no additional news out of the sorting of two
variables discussed in section 3.3 After passing the four
random variables in Code Stage 2 where and are sorted
so the output will force . In this case will be
assured to hold the least value among the four variables as it
was illustrated in Fig(5a). The mathematical evaluation of the
pmfs of and is based on repeated use of eq (29) and eq
(30). Similar discussion can be conducted for the sorting
and so the output will force , forcing to hold the
greatest value among the four variables as it was illustrated in
the algorithm in Fig(5a) also. The results of Code Stage 2 are
show in Fig (11). The final sorting stage is done between
and to assure that . The results are shown in Fig
(12). Fig (12) will repeate with any kind of additional sorting
is forced between any pair of the random variables which
indicates that this Figure represents the last results and no
further sorting can be done. The graphs depict mirrored image
of each other like the discussion in section 3.3.

(a) (b)
Figure 7 The pmf of X1(a) before IF statement with equality

condition and n=30 (b) after the IF statement

AJSE Volume 22, Issue 3, Page 271 - 278 Page 275

(a) (b)

Figure 8 The pmf of X1(a) before IF statement with less than
condition (b) after the IF statement

(a)

(b)

Figure 9The pmf of the two random variables for n=30 (a) before
the sorting code (b) after sorting code.

(a)

(b)
Figure 10. Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 1: SortRV(2,1), SortRV(4,3).

AJSE Volume 22, Issue 3, Page 271 - 278 Page 276

Figure 11 Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 2: SortRV(3,1), SortRV(4,2)

Figure 12 Results of Sorting Four variables (a) Initial input pmfs (b) pmfs after Code Stage 3: SortRV(3,2).

IV. CONCLUSION

This research suggests a new mathematical framework to
understand the influence of the program structures on input
random variables. The focus was on IF statement. The main
principle validated in this paper theoretically and practically is
that the portion of joint PMF of set of random variables that
represents the condition will be shifted and added with portion
that stands for the action. The framework is applied on sorting
two random variables and then on four random variables and
the theoretical obtained results were validated practically. The
equations derived in this study can be useful in evaluating
probabilistic model of various sorting algorithms or other
complex program structures. Additionally, this can lead in
formalizing more exact execution time expectation in future
studies

ACKNOWLEDGMENT
The authors would like to thank Tishk International

University (TIU) for their support.

REFERENCES

[1] John L., McCallum A., and Fernando C. N., "Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data", 18th International Conference on
Machine Learning 2001 (ICML 2001), pages 282-289.

[2] Kaufmann S., “Conditional Predictions”. Linguistics and
Philosophy volume 28, pages181–231 (2005).
https://doi.org/10.1007/s10988-005-3731-9

[3] George P., Eric N., Danilo J. R., Shakir M., Balaji L.,
“Normalizing Flows for Probabilistic Modeling and
Inference“, Journal of Machine Learning Research,
22(57):1-64, 2021.

[4] A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M.
Larsson, A. Kirillov, B. Savchynsk, C. Rother, F. Kahl, P.
H.S. Torr, "Conditional Random Fields Meet Deep Neural
Networks for Semantic Segmentation: Combining
Probabilistic Graphical Models with Deep Learning for
Structured Prediction," in IEEE Signal Processing
Magazine, vol. 35, no. 1, pp. 37-52, Jan. 2018, doi:
10.1109/MSP.2017.2762355.

[5] J. Xu, G. Chen, N. Zhou, W. -S. Zheng and J. Lu,
"Probabilistic Temporal Modeling for Unintentional Action
Localization," in IEEE Transactions on Image Processing,
vol. 31, pp. 3081-3094, 2022, doi:
10.1109/TIP.2022.3163544.

[6] Brückler, F. M., & Milin Šipuš, Ž. (2023). “Pre-service
mathematics teachers’ understanding of conditional
probability in the context of the COVID-19 pandemic”.
European Journal of Science and Mathematics Education,
11(1), 89-104. https://doi.org/10.30935/scimath/12436

[7] R. Marculescu, D. Marculescu, M. Pedram, “Probabilistic
Modeling of Dependencies During Switching Activity
Analysis”, IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN OF INTEGRATED CIRCUITS AND
SYSTEMS, VOL. 17, NO. 2, pp. 73-83, 1998.

[8] David L, Puaut I. “Static determination of probabilistic
execution times.” InProceedings. 16th Euromicro
Conference on Real-Time Systems, 2004. ECRTS 2004.
2004 Jul 2 (pp. 223-230).

[9] Liang Y, Mitra T. “Cache modeling in probabilistic
execution time analysis.” InProceedings of the 45th annual
Design Automation Conference 2008 Jun 8 (pp. 319-324).

[10] Miller, S. and Childers, D., 2012. Probability and random
processes: With applications to signal processing and
communications. Academic Press.

[11] Chakraborty S., “Some Applications of Dirac's Delta
Function in Statistics for More Than One Random
Variable,” Applications and Applied Mathematics: An
International Journal (AAM), Vol. 3, No. 1, Article 4, pp.
42 – 54, 2008.

[12] Alan V. O., Alan S. W., Nawab S. H. “Signals and
systems.” 2nd edition, Upper Saddle River, NJ: Prentice
hall, 1997.

[13] Grimmett G, Stirzaker D. “Probability and random
processes.” 4th edition, Oxford university press; 2020.

AJSE Volume 22, Issue 3, Page 271 - 278 Page 277

[14] Hwei P. H. , “Theory and problems of probability, random
variables, and random processes”, 1st edition, Schaum's
Outline Series, McGraw-Hill, 1997.

Alaa Ghazi Abdulbaqi received his
B.Sc. and M.Sc. in Computer
Engineering from Al Nahrain
University, Baghdad, Iraq, in 1995
and 1998. He is currently an Assistant
Lecturer in the Department of
Information Technology, Faculty of
Science, Tishk International
University, Erbil-Kurdistan, Iraq

Yasir Hashim received the B.Sc. and
M.Sc. in Electronic Engineering from
University of Mosul, Mosul, Iraq, in
1991 and 1995 respectively. He
completed his Ph.D. in Electronics
Engineering-Micro and Nano
electronics from Universiti Science
Malaysia (USM), Penang, Malaysia, in
2013. He is currently Lecturer in the

Department of Computer Engineering, Faculty of Engineering,
Tishk University, Erbil-Kurdistan, Iraq.

AJSE Volume 22, Issue 3, Page 271 - 278 Page 278

