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Abstract— The effects of Hall current and a uniform electric 

field on non-Newtanian casson fluid porous rotating disk flow are 

examined. A uniform angular velocity, an axial uniform magnetic 

field and the Hall current are taken into considered. Examples of 

Casson fluid include jelly, tomato sauce , honey , soup and 

concentrated fruit juices, ect. Human blood can also be treated as 

Casson fluid. Considering the suitable similarity parameters  the 

governing equations of the problem are then transformed into 

the non-linear ordinary differential equations. The  ordinary 

similarity differential equations are then solved numerically by 

six order Runge-Kutta method and shooting method using the 

Nachtsheim- Swigert iteration technique. 

Keywords— Non-Newtonian Casson fluid; MHD Flow, Hall 

effects; Electric field; Rotating disk; 

I.  INTRODUCTION 

In 1827 M Navier [1] has first developed the  three 
dimensional equations of viscous flow and on the basis of an 
argument which involved the consideration of intermolecular 
forces by S. D. Poisson[2] in 1831,. Later B. de Saint 
Venant[3] in 1843 and G. G. Stokes[4] in 1845, the same 
equations were derived without the use of any such 
hypotheses. The fully three dimensional rotating disk flow was 
first developed by Von-Karman [5] in 1921. Cochran [6] 
pointed out Von-Karman’s original momentum-integral 
solution to the problem contained errors. The fifth-order 
system as a singular perturbation problem was reformulated 
by Cochran. He corrected Van-Karman ‘s solution and then 
calculated more accurate values by numerical integration of 
the equations. Cochran’s solutions were improved by Benton 
[7] and extended the hydrodynamic problem to the flow 
starting impulsively from rest. The boundary layer flow in the 
vicinity of a separation point on general three dimensional 
case discussed by Howarth[8] in 1951. The equations were 
reducible to pair of simultaneous ordinary third-order 
differential equations are showed by him.. 

Hansan [9] discussed the possible forms of similarity 
requirements irrespective of the body shape and expressed the 
uniformed motion of the flow in tabular form. He presented a 
table showing the nature of the variations in the main stream 
components for which the governing equations to a set of 
ordinary differential equations. Later  Zekerullah and Maleque 
[10] have showed that a restricted form of variation in  
temperature difference between the surface and the ambient 
fluid for three dimensional mixed convective flow. For 
convective boundary layer in orthogonal curvilinear surfaces 
the similarity requirements are made by Zekerullah and 
Maleque[11] and displayed in tabular form. Allen and 
Rilley[12]  investigated out a three dimensional boundary 
layer  calculation for the flow over a semi infinite circular 
cylinder. Al-Doss and Jerroch[13] dealt with the non Darcian 
mixed convection boundary layer flow about vertical cylinder. 
Kuiken [14] found the effect of uniform blowing through a 
rotating porous disk on the flow induced by this disk. Hassan 
and Hazem[15] and Maleque and Sattar[16-19] investigated  
the steady/unsteady convective flow due to a rotating disk 
with magnetic field and heat absorption effects also 
considering the variable properties. Maleque [20] studied the 
effects of combined temperature- and depth-dependent 
viscosity and hall current on an unsteady MHD laminar 
convective flow due to a rotating disk. Recently Maleque [21] 
investigated that Magnetohydrodynamic convective heat and 
mass transfer due to a rotating disk with thermal diffusion 
effect. 

 In many coating applications in the polymer processing 
industry especially in extraction of crude oil from petroleum 
products however fluids used to generate damage resistant 
surfacing are generally non-Newtonian. Many authors have 
published their papers on  non-Newtonian fluids. Some of 
them are Acrivos et al [22], Mitschka [23], Rogovskii and 
Gorbis [24] and Sarma and Gupta [25]. A similarity solution 
for the power low fluid flow over a rotating disk studied by 
them. Rashaida et al [26] considered both flow and species 
from a rotating disk to a Bingham platic. In the category of 
non-Newtonian fluids, Casson fluid has distinct features.  First 
in 1959 Cassion [27]  presented  the model for the flow of 
viscoelastic fluid. Human blood, jelly, tomato sauce , honey , 
soup and concentrated fruit juices, etc are the examples of 
Casson fluid.  Several researcher published their excellent 
investigations on  non Newtonian Casson fluid flow. Non-
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Newtonian mhd Casson fluid flow with heat transfer between 
two cylindrical disk/pipe studied by Eldabe et al [28] and  
Dash et. al [29]. The  unsteady boundary layer Casson fluid  
flow on moving flat plate studied by Mostafa et al [30] while  
Nadeem et al [31] and Mukhopadhyay et al [32]  studied the 
Casson MHD fluid over an exponentially shrinking sheet.  
Recently Nadeem et al [33] studied mhd Casson fluid flow 
past a porous linear stretching sheet.  Very recently Maleque 
and Ghose[34] and Maleque [35] investigated the effects of a 
binary chemical reaction and activation energy on unsteady 
mhd non-Newtonian Casson fluid , heat and mass transfer 
flow due to ratating disk. In this present paper, the effects of 
hall current and a uniform electric field on non-Newtanian 
Casson fluid flow due to a porous rotating disk are examined. 
A uniform angular velocity, an axial uniform magnetic field 
and the Hall current are taken into considered. Considering the 
suitable similarity parameters  the governing equations of the 
problem are then transformed into the non-linear ordinary 
differential equations and then solved . The  ordinary 
similarity ordinary differential equations are then solved 
numerically by Nachtsheim- Swigert iteration technique and 
six order Runge-Kutta method. This problem is an extension 
work  studied by  Maleque [36]. 

II. GOVERNING EQUATIONS OF THE FLOW CONSIDERED:  

Considering the Mhd unsteady incompressible laminar 
boundary layer flow due to porous rotating disk. Non-
Newtonian Casson fluid and  a uniform electric field have 
been considered. The induced magnetic field is neglected 
while the Hall effect is taken into consideration. The 
governing equations the fluid flow are {Maleque [20]}: 

Mass equation: 
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The generalized Ohms’ law: 
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The external uniform magnetic field ),0,0(B 0B


 and 

Electric field E


 are normal to the surface of the disk. Very 
small unchanged magnetic Reynold’s number Rem is 
considered. We assume that the insulated disk is rotating about 
z-axis with a angular velocity Ω in the z = 0 plane with a 
uniform angular velocity. Here, ρ is the density of the fluid,    
v is the kinematic viscosity, σ is the electric conductivity and  
p is the pressure.  

The last term of equation (3) expressed as the Hall effect, 

where 
ne

e

1
  is the Hall factor, n is the electron 

concentration per unit volume and -e is the charge of electron 
and λ is the Casson parameter. On the basis of above 
mentioned physical configuration of the problem considered 
here is shown in the fig.1.  Let  and   be the cylindrical polar 
coordinates and the velocity vector respectively. The 
continuity and momentum equations are take the form: 

 

Fig. 1. The flow configuration and the coordinate system. 

Let ),,( zr  and ),,( wvuq 


 be the cylindrical polar 

coordinates and the velocity vector respectively. The 
continuity and momentum equations are take the form: 
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here  0Bm e  denotes the Hall parameter. 

The initial and boundary conditions are  

  .
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The conditions at 0z  represent no-slip conditions,       

while those at z  represent the far field conditions. 
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III. SIMILARITY SOLUTIONS  

To reduce the governing equations (4) - (7) to ordinary 
differential equations introducing the following dimensionless 
quantities {see  Maleque and Sattar[37]}: 
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where scale factor )(t   which is a function of time t.  

In equations (4) - (7), introducing non-dimensional 
similarity variables from equation (9), we have the following 
set of  nonlinear ordinary differential equations 
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where   /2

0BM ,  /2eR and 
00 / BrEK  , 

are the magnetic parameter, Reynolds number and the loading 
coefficient respectively. For the acceleration regime (of the 

pump) 1K  and the regime of breaking of flow  1K .  

The interval 10  K   comprises the regime of the MHD 

generator ({see Blums [38]}).  

The equations (10) - (13) appear the term 
dt
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 . For the 

similarity solution 
dt
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must be a constant quantity 

Maleque [26]. 

In equations (10) to (12) by assuming that  
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From equation (13), it has been found 

 LtAt   2)(    … (15) 

where L is the integrating constant.  If 0t  or 0A  

then L  represents the length scale for steady flow and 

for unsteady flow 0A  that is,   represents the length 

scale for unsteady flow 2A  is considered by Maleque 
[39,40] for a class solution. The nature of the solution would 

not be changed for the different value of A . Finally, using 
equation (14) in equations (11) - (13) respectively, we have  
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The initial and boundary conditions (8)  becomes  
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Where  /ws wW  . For a uniform suction 

)0( sW or injection )0( sW  at the plane of the disk {see 

Maleque and Sattar [21-22]}. Prime )( represents the 

differentiation with respect to  .  

IV. SOLUTION: 

We obtained the numerical solutions of reduced ODEs 
(16)-(18) by six order Runge-Kutta method with the help of  
Nachtsheim and Swigert [41]. Runge - Kutta method is the 
solver of initial value problems. To  convert boundary value 
problem to initial value problem the Nachtsheim - Swigert 
iteration technique the outer boundary conditions may be 
functionally represented by the first order Taylor’s series as 

F(ηmax) = F(X,Y) = F0(ηmax) + X FX + Y FY  = 1 

G(ηmax) = G (X,Y) = G0(ηmax) + X GX + Y GY  = 2   

 the asymptotic convergence are considered by  

F(ηmax) = F (X,Y) = F0(ηmax) + X FX + Y FY  = 3,   
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G (ηmax) = G (X,Y) = G0(ηmax) + X GX + Y GY = 4,   

where,  X=F(0), Y=G(0), and  X, Y subscripts indicate 

partial differentiation, e.g.,   FX = )0(/ FF  . The subscript 

0 indicates the value of the function at max  to be determined 

from the trial integration. 

By least square method finding the minimum values of the 
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need to differentiate E with respect to X, and Y  to obtain X, 

and Y respectively. A computer program was developed for 
the numerical solutions of the basic non-linear differential 
equations of our problem by adopting Nachtsheim and Swigert 
iteration technique, where the iteration technique was adopted 
as a six ordered Range-Kutta method of integration. In this 
different phases various groups of the parameters  , Ws , M 

and m were considered.. For a convergence criterion of 10-5 

for all the computations the step size 01.0  was 

selected in almost all of different phases mentioned above. 
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0  not change to successful loop with error less than 

510
. However, different step sizes such as 01.0 , 

005.0  and 001.0  were also tried and the 

obtained solutions have been found to be independent of the 
step sizes as observed in Fig.18. 

The computer program was developed with FORTRAN  
language and then we solved the equations (16)—(18)  
numerically by Nachtsheim-Swigert [41] iteration technique 
with the sixth order Range-Kutta integration scheme and 
numerical results were shown graphically and tabular forms.   

The results of the numerical calculations are presented in 
the form of the radial velocity, tangential velocity and axial 
velocity profiles, which depict the effects of various 

parameters  mWK s ,,,  and M  entering into the fluid 

flow due to the rotating disk. It is therefore, pertinent to 
enquire the effects of the variation of each of the parameter 
when the others are kept constant. 

The Newtonian formulae can be applied for finding the 

tangential shear stress t  and the radial shear stress 
r ,               
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The numerical computational results of the velocities 
profiles and the corresponding shearing stresses are organized 
graphically and in tabular form respectively.       

V. RESULTS AND DISCUSSION: 

The results were carried out for various values of casson 

parameter , suction/injection parameter sW , Reynolds 

number ,R  Magnetic interaction parameter M and loading 

parameter K  and  are presented in the form of the radial 
velocity, tangential velocity and axial velocity profiles. It is 
therefore, pertinent to enquire the effects of the variation of 
each of the parameter when the others are kept constant. 

For strong non-Newtonian fluid 0  is considered but 

 means Casson term may be neglected and 0K  

represents uniform electric field is not to be considered.  

For constant property case our results have been compared 
with those of Coachran [6] and Benton [7] in table-2 in order 
to highlight the validity of the numerical computations 
adopted in the present investigation. The comparisons show 
excellent agreements, hence an encouragement for the use of 
the present numerical computations.  

A. Casson parameter (  ) effect:  

The flows becomes strongly non-Newtonian Casson fluid 

flow for Casson parameter )1.0(0  but Casson term is 

neglected for )1000( that means the flow becomes 

Newtonian fluid flow. Fig.2 – Fig.4 shows the effect of 

Casson parameter   on the radial, tangential and axial 

velocity profiles respectively. Fig.2 shows that the decreasing 
values of Casson parameter lead to decrease the velocity 
profiles. Also, it has been found that for Newtonian fluid flow  

)1000(  the boundary layer is closed to the disk 

and the boundary layer separations are found for non-
Newtonian fluid. It has been found the difference between the 

radial velocity profiles for )1000(  and 0.1  

that the velocity profile decreases in the boundary layer 

8.00   but decrease for  8.0   with the decreasing 

values of casson parameter    and so on for 2.0  and 

1.0 .  

For decreasing values of   lead to increase the boundary 

layer thickness is decreasing for decreasing values of Casson 

parameter  . That is the radian frictional force decreases for 

strong casson fluid flow also agreed with table - 2. The effects 

of Casson fluid parameter   on tangential velocity profiles 

are shown in Fig.3. The tangential velocity increases for 

increasing values of Casson parameter  . The velocity profile 

shows its usual trend of gradual decay for casson fluid flow. It 
has been also found from Fig.3 that for strong casson fluid the 
tangential boundary layer thickness is closed to the wall means 
high tangential frictional forces are appeared also shown in 
table-1(c). It is investigated from Fig.4 that increasing values 

of   lead to increase the axial velocity. 

B. Magnetic interaction parameter M:  

The effect of the magnetic parameter M on the radial, the 
tangential and the axial velocity profiles shown in Fig.5 -
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Fig.7. The parameter M has marked effect on the radial 
velocity and tangential velocity profiles.  The parameter M 
does not enter directly into the axial velocity, but it influences 
come through the solution of the radial and the tangential 
velocities. 

It has been found from the figures Fig.5 - Fig.7 that  the 
increasing values of M lead to decrease F, G and H velocity 
profiles. Increasing the magnetic interaction parameter has the 
effect of damping the fluid velocity profiles. This is because 
the application of a transverse magnetic field normal to the 
flow direction will result in a resistive force (Lorentz force) 
similar to the drag force which tends to resist the fluid flow 
and thus reducing its velocity. Both tangential and radial 
shearing stresses decrease for increasing values of magnetic 
interaction parameter M shown in table-1(b).  

C. Loading parameter K: 

Fig.8-Fig.10 show that the effects of the radial, the 
tangential and the axial velocity profiles for different values of 
loading coefficient K respectively. K < 1 corresponds to the 
regime of breaking of flow but K > 1 corresponds to the 
acceleration regime (of the pump). The interval 0 < K < 1 
comprises the regime of the MHD generator (see Blums [38]). 
In our present investigation we have considered the interval -1 
< K < 1. From Fig.7, it has been found that the increasing 
values loading coefficient K lead to decrease the radial 
velocity profile. For constant angular velocity and K = -1, it is 
found from E0 = ΩrB0 that the electric field is proportional to 
the magnetic field. Similar effects of magnetic field and 
electric field are to be found on radial velocity profiles, the 
tangential and axial velocity profiles. The increasing values of 
K lead to the increasing values of the tangential and axial 
velocity profiles  shown in fig.8 and Fig.9 respectively.  

D. Hall Current parameter m: 

Fig.11-Fig.13 show the effects of Hall current parameter   
on the radial , the tangential and the axial velocities for the 
fixed values of  the parameters  λ, WS, K and M. It has been 
found from these figures Hall current parameter m has a 
sensible effect on the velocity profiles. The radial and the axial 
velocities increase for the limiting increasing values of m  
within 0 to 2.0 (not precisely determined), but But if the 
magnitude of m is increased beyond the limit of 2.0(possibly), 
the velocity profiles show a decreasing effect shown in Fig.11 
and Fig.13. This phenomenon has been explained by Hassan 
and Attia [19]. This is due to the fact that for large values of 
m, the term 1/(1+m2) is very small and hence the resistive 
effect of the magnetic field is diminished. It has been observed 
from Fig.12 that the tangential velocity increases with the 
increasing values of Hall parameter m.  

E. Suction/injection parameter WS: 

Fig.14 to Fig.16 showed the radial, the tangential and the 
axial velocity profiles for different values of suction and 
injection parameter WS kept the fixed values of other 
parameter say K = 0.05, M =0.05  and λ = 0.5. The axial 
velocity is nearly constant for suction WS = -1. The tangential 
velocity decays rapidly away closed to the surface while very 
little radial velocity is found. It has been observed from these 
figure that suction stabilizes the boundary layer is also 
apparent. The boundary layer is increasingly blown away from 
the disk to form an interlayer between the injection and the 
outer flow regions for the injection (WS > 0) shown in Fig.14 

to Fig.16. Higher injection velocities have the tendency to 
destabilize the laminar flow found from Fig.14-Fig16. 

 In Fig. 14, it is observed that for high values of injection 
parameter (WS = 4), the radial velocity overshoot and is closed 
to boundary of the surface. Opposite effect has been found for 
negative values of the parameter  WS.  This is due to the fact 
that, with increasing values of  WS, the injected flow can 
sustain axial motion to greater distances from the wall. Then, 
near the wall, the radial flow which is fed by the axial flow is 
expected to decrease as the injected parameter increases. 
Opposite effects are found for strong suction  WS < -1. Fig.15 
shows the effect of WS on tangential velocity. It is observed 
that the parameter WS leads the increasing values of tangential 
parameter. Fig.16 shows the effect of the axial velocity for the 
different values of  WS. It is observed from the figure that the 
axial velocity has constant effect for WS = -1.  

F. Unsteady parameter A: 

In equation (15), A = 0 then δ = L represents the length 
scale for steady flow and for unsteady flow A ≠ 0 that is, δ 
represents the length scale for unsteady flow. The comparison  
has been made for steady and unsteady flow on radial, 
tangential and axial velocities shown in Fig.17.  

Finally the boundary layer thickness is close to the wall for 
unsteady flow. The effects of various parameters (Re, and  M) 
on the tangential and radial shearing stresses τt and τr are 
shown in Table-1. From Table-1, it is observed that the 
tangential shearing stress decreases  and the radial shearing 
stress increases owing to the increase of rotating parameter R 
and magnetic interaction parameter M. 

VI. CONCLUSIONS: 

In the present paper we have investigated the effects of 
Hall current parameter, Casson parameter, magnetic 
parameter, electric loading parameter and suction/injection 
parameter  on an unsteady MHD non Newtonian convective 
flow induced by an infinite rotating porous disk. We reduced 
the partial differential equations to ordinary differential 
equations by introducing suitable similarity variables and then 
solved numerically by Nachtsheim and Swigert [36] iteration 
technique based on sixth-order Range-Kutta and shooting 
method. 

 We have made the following conclusions as a result of the 
computations: 
1. The decreasing values of Casson parameter λ lead to the 

decreasing values of the radial, tangential and axial 
velocity profiles.  

2. Increasing the magnetic interaction parameter M  has the 
effect of damping the fluid velocity profiles. This is 
because the application of a transverse magnetic field 
normal to the flow direction will result in a resistive force 
(Lorentz force) similar to the drag force which tends to 
resist the fluid flow and thus reducing its velocity. 

3. The increasing values loading coefficient K lead to 
decrease the radial velocity profile but the increasing 
values of K lead to the increasing values of the tangential 
and axial velocity profiles. 

4. Hall current parameter m has a sensible effect on the 
velocity profiles. The radial and the axial velocities 
increase for the limiting increasing values of m within 0 
to 2.0. The resistive effects of the magnetic field is 
diminished and hence the radial and axial velocity profiles 
decreases with the increase of m . 
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5. The axial velocity is nearly constant for suction WS = -1. 
The tangential velocity decays rapidly away closed to the 
surface while very little radial velocity is found. It has 
been observed from these figure that suction stabilizes the 
boundary layer is also apparent. The boundary layer is 
increasingly blown away from the disk to form an 
interlayer between the injection and the outer flow regions 
for the injection  (WS > 0). 

TABLE I.  THE RADIAL AND THE TANGENTIAL SKIN FRICTION 

COEFFICIENTS FOR THE DIFFERENT VALUES OF  RE, M AND   FOR M = 0.1, K 

= 0.5. 

(a) For  M = 0.5, m=0.1  and  =0.1      

eR  )0(F   )0(G   

0.0 

2.0 

4.0 

6.0 

8.0 
10.0 

0.00000 

0.57187 

0.94130 

1.21441 

1.43853 
1.63254 

-1.15363 

-1.45922 

-1.82698 

-2.14930 

-2.43329 
-2.68902 

(b) For  Re = 1.0, m=0.1 and   = 0.1 

M  )0(F   )0(G   
0.0 

0.5 
1.0 

2.0 

3.0 
4.0 

0.24233 

0.23635 
0.23242 

0.22842 

0.22799 
0.22766 

-1.16238 

-1.33993 
-1.50118 

-1.78734 

-2.03839 
-2.26385 

 (c)   For  M = 0.5, m=0.1   and    Re =1  

  )0(F   )0(G  

0.0001 0.0011069 -0.0295230 

0.001 0.0052883 -0.0508785 

0.010 0.0237140 -0.1189105 

0.100 0.0797787 -0.3365182 

0.500 0.1558607 -0.5981541 

1.000 0.1932840 -0.7070581 

10.0 0.2805427 -0.9211743 

  0.2805427 -0.9211743 
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Fig. 2. Effects of   on the radial velocity profiles. 
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Fig. 3. Effects of   on the tangential velocity profiles. 
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Fig. 4. Effects of   on the axial velocity profiles. 
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Fig. 5. Effects of M  on the radial velocity profiles. 
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Fig. 7. Effects of M  on the axial velocity profiles. 
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Fig. 8. Effects of K on the radial velocity profiles. 
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Fig. 9. Effects of K on the tangential velocity profiles. 
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Fig. 10. Effects of K on the axial velocity profiles. 

 

Fig. 11. Effects of m on the radian velocity profiles. 
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Fig. 12. Effects of m on the tangential velocity profiles. 
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Fig. 13. Effects of m on the axial velocity profiles. 
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Fig. 14. Effect of sW on the radial velocity profiles. 
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Fig. 15. Effect of sW on the tangential velocity profiles. 
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Fig. 16. Effect of sW on the axial velocity profiles. 
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Fig. 17. The radial, the tangential and the axial velocity profiles for steady and 

unsteady cases. 
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