
Abstract— The efficacy of transmitting energy from high voltage 
transmission power lines to low voltage distribution power lines is 
vital in electrical power networks. Nevertheless, distribution 
systems often encounter substantial I2R losses as a result of 
elevated R/X ratios, heightened current levels, and insufficient 
voltage circumstances. Distribution power businesses are 
incentivized to minimize losses, since the financial repercussions 
are contingent upon the disparity between real and anticipated 
losses. Strategies to reduce losses include feeder grading, 
allocation of distributed generation (DG), reconfiguration of the 
network, allocation of capacitors, and novel methods for high 
voltage distribution systems. The purpose of this work is to use an 
evolutionary algorithm called particle swarm optimization to 
identify the optimal allocation of photovoltaic production, using a 
multi-objective function and many constraints. The efficacy of 
these algorithms was evaluated using MATLAB R2022a on 
standard radial 33 and 69 IEEE bus systems, offering a 
comprehensive assessment of their performance in real-world 
situations. The main objective is to improve strategies for 
minimizing losses in distribution networks by using advanced 
optimization methods to strategically place photovoltaic 
distributed generation. 

Keywords— DG allocation, Distribution network optimization, 
Solar PV, Decentralized generation, Evolutionary algorithm.   

I. INTRODUCTION

The shift from centralized to decentralized power production is 
driven by increasing energy demands and sustainable 
development goals. This involves integrating small electricity-
generating units into distribution networks, offering benefits 
like reduced costs, reduced power dissipation, backup power, 
and enhanced network resilience. However, the optimal use of 
these benefits depends on the strategic positioning and scale of 
distributed generators.  
The distribution networks are responsible for 70% of the power 
losses, highlighting the significance of decentralized generation 
in addressing technical, economic, and environmental obstacles 
[1-3].   This   research    aims to   improve the     performance,  
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reliability, and environmental sustainability of power networks 
by integrating solar photovoltaic (PV) technology on standard 
radial 33 and 69 IEEE bus systems. The integration of 
distributed generators offers advantages such as decreased 
transmission and distribution expenses, minimized power 
dissipation, supply of backup power during outages, and 
enhanced network resilience [4]. Nevertheless, the optimal use 
of these benefits heavily relies on the strategic positioning and 
scale of distributed generators. Improper positioning may result 
in difficulties such as heightened power dissipation, voltage 
irregularities, and diminished power integrity. The increasing 
intricacy of distribution networks, along with varied client 
demands, requires the use of inventive solutions for 
optimization. Feeder reconfiguration is a crucial technique that 
improves the performance of a system by distributing loads 
evenly, enhancing feeder voltage, and reducing power losses 
throughout the whole system [5]. Merlin and Back first used 
optimization techniques to reduce losses, however later 
research suggested heuristic methods that relied on voltage 
differentials [6-8]. Civanlar used heuristics to minimize line 
loss, whereas Baran and Wu improved the approaches by 
including power flow equations and considering load balancing 
factors [9-11]. Chiang, Jean-Jumean, Jeon, Chen, Cho, Wagner, 
and other researchers suggested many optimization techniques 
[12-14]. The integration of distributed generation (DG) units 
into distribution networks presents issues because of the exact 
position ambiguity. Das, Loparo, and their colleagues used 
sensitivity analysis to optimize the size and placement of 
utility-operated DG units [15-16]. Reliability-focused 
optimization techniques, such as linear programming and 
evolutionary algorithms like particle swarm optimization 
(PSO), have been used to identify the most suitable location and 
scale of DG systems [17-19]. Ramos, Wang, 
Rugthaicharoencheep, and Sirisumrannukul used evolutionary 
algorithms and optimization approaches to enhance network 
efficiency and achieve load balancing [20-22]. In addition, 
research conducted by Ding, Kenneth, and other scholars has 
specifically examined the reconfiguration of unbalanced 
networks by the use of nonlinear programming and sensitivity 
analysis [23]. Various techniques such as loss sensitivity factor, 
linear programming, simulated annealing, particle swarm 
optimization, and fuzzy approaches have been used to ascertain 
the most efficient size and placement of DG systems [24-26]. 
Ochoa successfully achieved significant reductions in actual 
power loss and short circuit levels [27]. This extensive review 
establishes the context for the present investigation, 
highlighting the need for sophisticated optimization techniques 
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in the changing environment of distribution networks. Fig. 1. 
depicted photovoltaic type DG incorporation into a distribution 
power line. Fig. 2. Advantages of integrating distributed 
generation in power distribution lines. 
Based on the above discussion the contribution of this research 
are:  
• This paper creatively combines fixed and unpredictable 
photovoltaic production by using PSO to reduce I2R losses in 
distribution power lines. 
•  In contrast to conventional methods, the study specifically 
emphasizes the crucial significance of determining the place 
and size of distributed generation in order to tackle the issues 
associated with increased I2R losses in distribution power lines. 
• This research distinguishes itself by examining three 
simulation scenarios, thoroughly assessing the algorithm 
efficacy in maintaining power quality and reducing energy loss, 
hence improving the practical relevance of the research. 
 

 
Fig. 1. Photovoltaic type DG incorporation into a distribution power line. 
 

 
 
Fig. 2. Advantages of integrating distributed generation in power distribution 
lines. 

I. METHODOLOGY 

A. Evolutionary Algorithm: 

PSO efficiently explores solution spaces by drawing inspiration 
from collective intelligence observed in fish and birds. This 
adaptive algorithm operates independently of target function 
attributes and accommodates diverse technologies. PSO 
construction involves a simple configuration with few 
adjustable parameters and no specific initial settings. Within the 
PSO framework, individuals form a swarm, traversing the 
solution space as particles. Collaboration among particles 
involves exploring paths and sharing information, facilitating 
dynamic solution enhancement. Velocity-based adjustments 
iteratively refine solutions until termination conditions are met, 
succinctly captured by a mathematical equation governing 
positional changes. PSO, rooted in collective search behavior, 

serves as a robust and adaptable optimization tool applicable 
across various contexts. Fig. 3. provides a visual representation 
of the PSO exploration process. 
 
𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 + 𝐶1 × 𝑟1 × (𝑃𝑙𝑜𝑐𝑎𝑙 − 𝑃𝑜𝑙𝑑) + 𝐶2 × 𝑟2 × (𝑃𝑔𝑙𝑜𝑏𝑎𝑙 −

 𝑃𝑜𝑙𝑑)                  (1) 
𝑃𝑁𝑒𝑤 = 𝑃𝑂𝑙𝑑 + 𝑉𝑁𝑒𝑤 

 

 
 
Fig. 3. The concept of searching PSO. 
 
Here, Pold  and Pnew  are the previous and updated particle 
values, Vold  and VNew  are the previous and new velocities, 
C1, C2 (1.2 and 0.12 respectively) are weighting factors, and r1, 
r2 are random numbers between 0 and 1. PLocal is the personal 
and Pglobal is the global best value within the group.  

B. Load Flow Analysis: 

The shift from passive to active states in distribution systems, 
driven by increased adoption of DG, demands a reevaluation of 
distribution analytic techniques. Accurate load flow forecasting 
becomes challenging with the integration of remote 
generations, especially when dealing with PV buses, requiring 
additional load flow calculation procedures. Fig. 4. outlines the 
successive stages in establishing an accurate load flow solution 
in a distribution system, emphasizing the challenges posed by 
dispersed generation. The evolving distribution system 
underscores the necessity for enhanced analytical methods to 
accommodate the dynamics introduced by widespread 
dispersed generation technologies. The inherent radial structure 
and elevated R/X ratios in distribution networks present 
challenges for traditional load flow methods commonly used in 
broader energy systems. Conventional approaches like LU 
factorization and Jacobian matrix substitution prove inefficient 
and time-consuming, particularly in networks with low 
strength, leading to convergence issues. These limitations 
highlight the demand for tailored load flow solutions capable of 
addressing the unique characteristics of distribution networks, 
ensuring precision and effectiveness in power flow analysis 
within these systems. 
 

 
 
Fig. 4. The procedure for acquiring the load flow solution in distribution redial 
power lines.  
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C. Problem Formulation: 

The main objective of this research is to improve the technical 
and economic benefits obtained by integrating photovoltaic 
distribution generation (PV-DG) into the current standard radial 
distribution power lines, achieved via careful planning and 
deliberate design. The decision to use a three-year planning 
horizon is important due to the inherent fluctuations in 
consumer load and sun irradiation during the four seasons, each 
lasting about 91.25 days. The mathematical representation of 
this capability is expressed by the following formula.  
min F = min (ω1  × Obj1 + ω2  ×  Obj2)              (2)                                                                          
The main goals of Obj1  and Obj2  are to reduce voltage 
variations and improve the voltage stability index term. The 
values ω1 and ω2 denote the allotted weights allocated to each 
target, indicating the importance ascribed to specific objectives. 
The collective importance of these goals is shown by the act of 
adding them together, as described below.  
 
|𝜔1| + |𝜔2|  = 1                            (3) 

 
 𝑂𝑏𝑗1 = 

𝑇𝑉𝐷𝑤𝑖𝑡ℎ

𝑇𝑉𝐷𝑤𝑖𝑡ℎ 𝑜𝑢𝑡
               (4) 

  𝑂𝑏𝑗2 =  
1

∑ 𝑉𝑆𝐼𝑛
𝑁𝐵
𝑛=1

                 (5) 
 

The term TVDwith  is used to describe the whole collection of 
voltage deviations, except those related to PV-DG. The use of 
this terminology is crucial for distinguishing and measuring 
changes in voltage that are not influenced by photovoltaic 
distributed generation contributions. The mention equation 
defines the power loss experienced on each distribution power 
line, offering a numerical depiction of the effect on the 
electrical network. 
 
PLoss = Rn,n+1 (

Pn
2+jQn

2

|Vn|
2
)                                   (6) 

 
The electrical output produced by the photovoltaic unit is 
represented as PPV , and its mathematical expression may be 
stated as follows.  
 

PPV =

{
 
 

 
 Pr  (

Gs
2

Gstd×Xc
) ,                         for 0 < Gs ≤ Xc

  Pr  (
Gs

Gstd
) ,                          for  Xc ≤ Gs ≤ Gstd

Pr ,                             for  Gstd ≤ Gs

                      (7) 

 
Stands Gstd refers to the standardised solar irradiance 
environment, which is defined as 1000 W/𝑚2and serves as a 
benchmark for solar irradiance. Simultaneously, Gs  represents 
the sun irradiance measured in watts per square metre, 
indicating the real sun irradiance at a particular location, with 
Xc representing a single point of sun irradiance. The other goal 
function is to enhance the voltage profile by reducing voltage 
deviations. The purpose of this aim function is to strategically 
improve the stability and dependability of the power system by 
making specific modifications in response to changes in solar 
irradiance levels. 
 

𝑇𝑉𝐷 = 91.25 × ∑ ∑ ∑ |𝑉𝑛 − 1|
𝑁𝐵
𝑛=1

24
ℎ=1

𝑁𝑠
𝑖=1                                             (8) 

 
The calculation of voltage differences is crucial for determining 
the Total Voltage Deviation (TVD), with NB being the total 
number of buses. In the study, an important factor taken into 
account is the enhancement of the Voltage Stability Index 
(VSIn), which is a function specifically developed to improve 
the overall stability of the system. The function's form is 
explained as follows, indicating a purposeful attempt to 
enhance the voltage stability index for increased power system 
resilience.  
 
𝑇𝑉𝑆𝐼 = 91.25 × ∑ ∑ ∑ 𝑉𝑆𝐼𝑛

𝑁𝐵
𝑛=1

24
ℎ=1

𝑁𝑠
𝑖=1                                               (9) 

𝑉𝑆𝐼𝑛 = |𝑉𝑛|
4 − 4 (𝑃𝑚𝑛+1𝑋𝑛 −𝑄𝑛+1𝑅𝑛)

2 − 4 (𝑃𝑛+1𝑋𝑛 +
𝑄𝑛+1𝑅𝑛) |𝑉𝑛|

2                                                                                  (10) 
 
The following equality constraints clarify the criteria for 
equilibrium that regulate the distribution of power within the 
system. 
 
𝑃𝑆𝑙𝑎𝑐𝑘 +∑ 𝑃𝑃𝑉,𝑖

𝑁𝑃𝑉
𝑖=1 = ∑ 𝑃𝑙𝑜𝑠𝑠,𝑖 + ∑ 𝑃𝐿,𝑖

𝑁𝐵
𝑖=1

𝑁𝑇
𝑖=1                                 (11) 

𝑄𝑆𝑙𝑎𝑐𝑘 +∑ 𝑄𝑃𝑉,𝑖
𝑁𝑃𝑉
𝑖=1 = ∑ 𝑄𝑙𝑜𝑠𝑠,𝑖 + ∑ 𝑄𝐿,𝑖

𝑁𝐵
𝑖=1

𝑁𝑇
𝑖=1                               (12) 

 
The variables 𝑃𝐿  and 𝑄𝐿  indicate the active and reactive power 
demands of loads, respectively. On the other hand, 𝑃𝑆𝑙𝑎𝑐𝑘  and 
𝑄𝑆𝑙𝑎𝑐𝑘  represents the amount of active and reactive power being 
produced by the substation. In addition, NPV, in this particular 
situation, may include the number of photovoltaic units. 
 
𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥                                                                              (13) 
𝐼𝑛 ≤ 𝐼𝑚𝑎𝑥,𝑛 𝑛 = 1, 2, 3,… , 𝑁𝑇                                                        (14) 
∑ 𝑃𝑃𝑉,𝑖 ≤ ∑ 𝑃𝐿,𝑖

𝑁𝐵
𝑖=1

𝑁𝑃𝑉
𝑖=1                                                                      (15) 

∑ 𝑄𝑃𝑉,𝑖 ≤ ∑ 𝑄𝐿,𝑖
𝑁𝐵
𝑖=1

𝑁𝑃𝑉
𝑖=1                                                                     (16) 

 
The term 𝑉𝑚𝑖𝑛  refers to the minimum voltage limit, whereas 
𝑉𝑚𝑎𝑥 represents the highest voltage threshold. In addition, the 
notation 𝐼𝑚𝑎𝑥,𝑛 precisely defines the maximum allowable 
current for the nth distribution power line. 
This section outlines the methodology for predicting 
uncertainty in Photovoltaic units and consumer demand. A 
comprehensive stochastic model is developed using three years 
of hourly historical data from a specific location. The temporal 
dimension is divided into four seasons, each comprising 96-
time intervals to represent the 24-hour daily cycle. Probability 
distribution functions (pdfs) for each time are constructed by 
aggregating data from the same hour over three years. Hourly 
pdfs are derived from a dataset of 270 data points, 
encompassing sun irradiance and consumer demand for each 
time period over a 3-year span, organized into 3 months for 
each season with 30 days per month. The subsequent section 
provides a detailed explanation of the probabilistic model 
governing the behavior of both the photovoltaic system and 
electricity demand. Fig. 5. and Fig. 6. Shows the standard IEEE 
radial 33 and 69 distribution power system. 

AJSE Volume 23, Issue 3, Page 200 - 208 Page 202



D. Solar Irradiance Modeling: 

The sun radiation data for each hour was used to create a Beta 
probability density function customized for the particular time 
period being studied. The accompanying discourse will clarify 
the creation of this probability density function. 
 

fb(gs) = {
𝑢

ᴦ(α+β)

ᴦ(α).ᴦ(β)
gs
(α−1)

. u(1 − gs)
(β−1), u0 ≤ gs ≤ 1;   α, β ≥ 0

0,                                               Otherwise
                                           

                                                                                                         (17) 
 
The Beta probability density function for solar irradiance, 
fb(gs), is defined using the gamma function, ᴦ, with α and β as 
the parameters that distinguish each phase of the Beta 
distribution. The process of obtaining these parameters from 
past data is explained in detail in the following technique. 
 
𝛽 = (1 − 𝜇) × (

𝜇×(1+𝜇)

𝜎2
− 1)                                                           (18) 

𝛼 =
𝜇×𝛽

1−𝜇
                                                                                             (19) 

 
The average (µ) and variability (σ) of solar irradiation for each 
specific time period are given in reference [28]. Dividing Beta 
probability density functions into several intervals results in 
respective average values and probabilities of occurrence. The 
probability of a certain segment occurring during a given hour 
is calculated using the following formula: 
 
𝑝𝑟𝑜𝑏𝑖

𝑔𝑠 = ∫ 𝑓𝑏(𝑔𝑠)𝑑𝑔𝑠,𝑖
𝑔𝑠,𝑖+1
𝑔𝑠,𝑖

                                                            (20) 
 
The parameters 𝑔𝑠,𝑖 and 𝑔𝑠,𝑖+1 provide the starting and ending 
points of the interval, which are identified by the index i. The 
notation 𝑝𝑟𝑜𝑏𝑖

𝑔𝑠represents the likelihood of interval i occurring 
within the solar irradiance distribution. The output power of 
Photovoltaic (PV) systems during certain states may be 
calculated using equation (7), which utilises the Beta 
probability density function for solar irradiance during a 
specified time. 

E. Load Demand Modeling: 

Since To account for the random behavior of the load demand, 
a normal probability density function is used to represent its 
fluctuation at each bus. The approach described in reference 
[11] enables the calculation of the average probability density 
function for the intrinsically uncertain load demand. 
 
𝑓𝑛(𝑙) = 𝑢 1

𝜎𝑙√2𝜋
× 𝑒𝑥𝑝 [−(

𝑙−𝜇𝑙

2𝜎𝑙
2)]                                                       (21) 

         
The probability of a segment occurring during a certain hour is 
measured by the following equation: The function 𝑓𝑛 (𝑙 ) 
represents the probability density function that describes the 
load demand. The parameters 𝜇𝑙   and 𝜎𝑙  represents the mean 
and variability of the load demand for each specific time. 
 
𝑝𝑟𝑜𝑏𝑖

𝑙 = ∫ 𝑓𝑛(𝑙)𝑑𝑙𝑢 
𝑙𝑖+1
𝑙𝑖

                                                                       (22) 
 

The probability of interval i happening is represented as               
𝑝𝑟𝑜𝑏𝑖

𝑙 , wherein 𝑙𝑖 and 𝑙𝑖+1  represent the initiation and 
conclusion of the interval, respectively. 

F. Combined Model: 

The probabilistic models for solar irradiance and load demand, 
explained in subsections A and B, are combined to provide a 
unified probability model called (𝑃𝑐𝑜𝑚,𝑖)  for Photovoltaic (PV) 
load. To calculate this integrated model for each unique time, 
the probabilities related to solar irradiance and load demand are 
convoluted, as explained in reference [29]. 
Pcom,i = probi

gs × probi
l                                                                   (23) 

 

 
 

Fig. 5. Standard IEEE radial 33 distribution power system. 
 

 
Fig. 6. Standard IEEE radial 69 distribution power system. 

II. RESULTS AND DISCUSSIONS 
The preliminary findings, excluding sunlight exposure and load 
demand uncertainties, are displayed in Table 1 for the standard 
33 redial distribution bus system when the evolutionary 
algorithm is implemented and when it is not. In a similar vein, 
the results for the standard 69 redial distribution bus system in 
the presence and absence of the evolutionary algorithm are 
detailed in Table 2. 
 
Table 1: Comparative results under certainty for the standard 33 redial 
distribution bus system with and without PSO. 
 

Parameters Base Case With PV PSO 
Active Power Loss (kW) 202.6771 96.7132 
Reactive Power Loss (kVAR) 135.141 67.8457 
Minimum Voltage 0.91306 0.95 
Minimum Voltage Bus No. 18 7 
Maximum Voltage 0.99703 0.99706 
Maximum Voltage Bus No. 2 2 
Optimal PV Location NIL 14, 15 
Optimal PV Size (kW) NIL 445, 453 
VSI (p.u) 25.595 27.1364 
VD (p.u) 1.7013 1.2298 

 
Moreover, the results are displayed herein post-consideration of 
uncertainties related to sun irradiance and load. Table 3 
delineates the results for the standard 33 redial distribution bus 
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system, comparing scenarios with and without the application 
of Particle Swarm Optimization (PSO). Correspondingly, Table 
4 portrays the simulation results for the standard 69 redial 
distribution bus system under conditions where PSO is absent 
and present. 
 
Table 2: Comparative results under certainty for the standard 69 redial 
distribution bus system with and without PSO. 
 

Parameters Base Case With PV PSO 
Active Power Loss (kW) 224.9606 129.97 
Reactive Power Loss (kVAR) 102.147 53.3081 
Minimum Voltage 0.90901 0.95 
Minimum Voltage Bus No. 65 57 
Maximum Voltage 0.99997 0.99997 
Maximum Voltage Bus No. 2 2 
Optimal PV Location NIL 20, 23 
Optimal PV Size (kW) NIL 315, 296 
VSI (p.u) 60.645 61.6304 
VD (p.u) 1.8385 1.5314 

 
 
Table 3: Comparative results under uncertainties for the standard 33 redial 
distribution bus system with and without PSO. 
 

Parameters Base Case With PV PSO 
Active Power Loss (kW) 125.2216 118.9791 

Reactive Power Loss (kVAR) 80.1132 76.1253 
Eloss (MWh) 0.53495 0.44502 
Egrid (MWh) 40.5349 40.445 

Optimal location NIL 18, 16 
Optimal size (KW) NIL 2639, 939 

VD (p.u) 10523.8643 9125.8153 
VSI (p.u) 238991.3695 250042.0161 

 
Table 4: Comparative results under uncertainties for the standard 69 redial 
distribution bus system with and without PSO. 

 
Parameters Base Case With PV PSO 

Active Power Loss (kW) 127.5364 120.5134 
Reactive Power Loss (kVAR) 62.023 58.0508 

Eloss (MWh) 0.51276 0.45194 
Egrid (MWh) 40.5128 40.4519 

Optimal location NIL 64, 18 
Optimal size (KW) NIL 2479, 945 

VD (p.u) 12619.523 10820.7753 
VSI (p.u) 546037.3176 562010.8104 

 

 
 

Fig. 7. Pre and post photovoltaic integration voltage profiling on the standard 
33 redial distribution bus system. 

The subjoined output graphs from fig. 7. to fig. 12. depict a 
scenario wherein uncertainties associated with load demand 
and solar irradiance are omitted from consideration. 
 
The ensuing statistical graphs from fig. 13. to fig. 24. illustrates 
the conditions wherein uncertainties associated with load 
demand and solar irradiance are factored into the analysis. 
 

 
 
Fig. 8. Active power loss occurs both before and after photovoltaic integration 
in a standard 33 redial distribution bus system. 

 
 
Fig. 9. Reactive power loss occurs both before and after photovoltaic 
integration in a standard 33 redial distribution bus system. 
 

 
 
Fig. 10. Pre and post photovoltaic integration voltage profiling on the standard 
69 redial distribution bus system. 
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Fig. 11. Active power loss occurs both before and after photovoltaic integration 
in a standard 69 redial distribution bus system. 
 

 
 
Fig. 12. Reactive power loss occurs both before and after photovoltaic 
integration in a standard 69 redial distribution bus system. 
 

 
 
Fig. 13. Variations in seasonal hourly demand for the standard 33 redial 
distribution bus system. 
 
 

 
 

Fig. 14. Solar irradiation fluctuations throughout the seasons for the standard 
33 redial distribution bus system. 
 

 
 
Fig. 15. Spring voltage profile for a standard 33 redial distribution bus system 
pre and post photovoltaic integration. 
 

 
 

Fig. 16. Summer voltage profile for a standard 33 redial distribution bus system 
pre and post photovoltaic integration. 
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Fig. 17. Autumn voltage profile for a standard 33 redial distribution bus system 
pre and post photovoltaic integration. 
 

 
 

Fig. 18. Winter voltage profile for a standard 33 redial distribution bus system 
pre and post photovoltaic integration. 
 

 
 
Fig. 19. Variations in seasonal hourly demand for the standard 69 redial 
distribution bus system. 
 
 
 
 

 
 
Fig. 20. Solar irradiation fluctuations throughout the seasons for the standard 
69 redial distribution bus system. 
 

 
 

Fig. 21. Spring voltage profile for a standard 69 redial distribution bus system 
pre and post photovoltaic integration. 
 

 
 
Fig. 22. Summer voltage profile for a standard 69 redial distribution bus system 
pre and post photovoltaic integration. 
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Fig. 23. Autumn voltage profile for a standard 69 redial distribution bus system 
pre and post photovoltaic integration. 
 
 

 
 

Fig. 24. Winter voltage profile for a standard 69 redial distribution bus system 
pre and post photovoltaic integration. 

III. CONCLUSION 
To summarize, this research emphasizes the need for effective 
power distribution in electrical systems, with a specific focus 
on reducing I2R losses in distribution power lines. Certain 
methods, such as high voltage distribution systems, distributed 
generation allocation, line grading, network reconfiguration, 
and capacitor allocation, have been investigated with the 
intention of lowering losses. In this research PSO optimization 
technique was used to evaluate the capability and positioning 
of photovoltaic generators in radial distribution power lines. 
Our analysis focuses on mitigating voltage drops, achieving 
phase voltage balance, and minimizing energy loss. The 
comparison of IEEE standard redials bus systems, which are 33 
and 69, reveals that the PSO method outperforms in terms of 
solution quality and convergence time. Subsequent studies will 
include several evolutionary algorithms such as Artificial Bee 
Colony, Grasshopper optimization and Ant Colony techniques 
to improve the suggested system. This research not only 
decreases power losses but also improves voltage stability in 
simulations of both IEEE standard redial bus systems, 
providing useful insights for study in power system 

optimization. The use of distributed generation and loss 
reduction enhances the novelty and durability of energy 
distribution networks. 
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