
Abstract— This study aims to demonstrate the application of a
graph convolutional neural network for the purpose of object
detection in a LiDAR point cloud. To achieve efficient encoding of
the point cloud, the research used a near-neighbours graph with a
predetermined radius. The study created a graph convolutional
neural network so that study can find out what kind of object and
what class each vertex in a graph actually represents. The research
developed a box merging and scoring operation to reliably
integrate detections from multiple vertices into a single score, as
well as an auto-registration technique to reduce the amount of
internal translation errors. Based on the findings obtained from
our experimentation using the KITTI benchmark, the research
has arrived at the inference that the proposed technique
demonstrates a commendable level of precision when compared to
the point cloud. In fact, in some cases, it outperforms fusion-based
methods. Based on the findings of our study, it can be concluded
that the graph neural network has promising potential as a novel
and efficient tool for the identification and recognition of three-
dimensional objects.

Index Terms—Graph Convolutional Neural Network, Point
Clouds, Multilayer Perceptron, Object Detection, Localization,
Semantic KITTI.

I. INTRODUCTION

It is essential for robot perception [1] to have a three-
dimensional understanding of the surrounding world. It is
common practice for 3D sensors such as LiDAR to store their
data in the form of point clouds, which are collections of points
dispersed throughout space. It is vital for several applications,
such as autonomous driving [2], to have precise object detection
derived from a point cloud. In order to recognize objects in
photographs, convolutional neural networks {Formatting
Citation} must first perform the convolutional operation. The
method of convolution is quite effective, but the input must be
in the form of a regular grid. In contrast to an image, a point
cloud often has a more dispersed and uneven distribution of its
points. When a point cloud is superimposed on a regular grid,
an uneven distribution of points results in each grid cell. If the
same convolution technique is applied to such a grid, it is
possible that there may be information loss in the cells that have
a high population density and superfluous processing in the
cells that are empty. Recent developments in neural network
Ahmed Abdullah
Dept of Computer Science, Bishop University, Canada
Email: aabdullah20@ubishops.ca

Mehzabul Hoque Nahid
Dept of Management Information Systems, American
International University-Bangladesh, Dhaka,
Bangladesh, Email: mehzab.nahid@aiub.edu

technology have made it possible to enter a set of points in any
order. In the field of research, this particular type of neural
network is applied to extract attributes of point clouds without
first mapping the point clouds to a grid [5]. In most cases,
however, in order to cons truct a representation of a point set,
they are required to sample and aggregate points in an iterative
manner. The process of repeatedly grouping and sampling a
large point cloud might incur significant processing costs [6],
[7]. Many modern 3D detection algorithms make use of a
hybrid strategy that blends grid and set representations at
different points of the detection process [8]. Despite the fact that
hybrid approaches have shown some encouraging results, it is
possible that they are prone to the limitations of both types of
representation. In this paper, the study propose the use of a
graph as a condensed representation of a point cloud and the
creation of a graph neural network that the study will refer to as
GCNnet for the purpose of object detection [9]. The study
possess the capability to inherently represent the point cloud
within a graph structure, accomplishing this by directly
associating the points with the graph’s vertices. The graph’s
edges establish connections between adjacent positions within
a predefined radius, thereby facilitating the transfer of feature
information among proximate neighbors. A point cloud can be
represented by such a graph in such a way that it conforms
directly to the structure of the point cloud, eliminating the need
for any kind of regularization. A graph neural network avoids
constantly grouping and sampling points by recycling graph
edges at each layer and does so throughout the network.
Research has been conducted on the topic of semantic
segmentation and classification of point clouds with graph
neural networks. However, graph neural networks have only
been the subject of a small number of studies looking into 3D
object detection in point clouds. Our study indicates that it is
possible to use Graph-CNN for extremely precise object
detection in a point cloud by utilizing it to analyze the data. The
point graph is an acceptable kind of input for the GCNnet that
the study have suggested. It will generate both the category and
the bounding boxes associated with each linked item for every
vertex. This method constitutes a single-step procedure capable
of detecting numerous distinct elements within a single scan of
the region. To mitigate the influence of translation-induced
variations in a graph neural network, the study introduce a point
cloud registration technique. When applied, this method
facilitates the alignment of point coordinates based on their
inherent characteristics. The KITTI [10] evaluation serves as a
standard for the technique that has been suggested [11]. Our
GCNnet illustrates the promise of a new form of 3D object
detection approach based on graph neural networks, and it can
serve as a solid foundation for further research. This method is

AIUB JOURNAL OF SCIENCE AND ENGINEERING
ISSN: 1608 – 3679 (print) 2520 – 4890 (Online)

DOI: 10.53799/ajse.v23i1.763

Published in AJSE, Vol:23, Issue: 1
Received on 1st May 2023

Revised on 19th February 2024
Published on 25th April 2024

 GCN-Net: 3D Point Cloud Classification & Localization
Using Graph-CNN

Ahmed Abdullah and Mehzabul Hoque Nahid

AJSE Volume 23, Issue 1, Page 11- 16 Page 11

based on graph neural networks.

II. RELATED WORD
Using a convolutional neural network (CNN), the authors of the
publication [3] were able to identify individual points inside a
point cloud. In order to evaluate the point cloud, a Bird’s Eye
View (BEV) [12] is first created, which is a 2D picture. Using
a picture of the front elevation (FV) does the same thing.
However, a phenomenon called quantization error may occur
during the process of reducing a 3D picture to a 2D format.
Some solutions to this problem include preserving the point
cloud’s 3D structure. VoxelNet is a technique for 3D object
detection [13] that works by using 3D voxels (volumetric
pixels) to represent points in the point cloud. However, as the
resolution of the voxels becomes higher, the computational cost
of employing 3D convolution rises. Sparse convolution [14] is
one method that may be utilized to increase productivity. It’s
important to remember that transforming a point cloud into a
2D or 3D grid might result in a misalignment between the point
cloud’s organization and the grid’s uniformity. The examples
of PointNet[15] and DeepSet[16] demonstrate how neural
networks can be used to directly extract attributes from an
unsorted set of points. The data from each point is fed into a
multi-layer perceptron (MLP) [17], which outputs a feature
vector. All of these characteristics are represented in a single
vector by a mean or maximum function. In order to aggregate
point attributes in a hierarchical fashion, Pointnet++[15] takes
samples from the neighborhood of nodes to generate local
subsets of points. The study then generates new sets from these
groups in order to extract more characteristics. Neural networks
are used in several 3D object detection methods because of their
ability to process point clouds without grids. More
computational power is needed for large-scale point sampling
and clustering. The neural network on sets is used exclusively
in the object detection research. In order to predict 3D object
bounding boxes, the paper [7] employs Pointnet++ to segment
camera images into object and background points. Pointrcnn
[18] proposes bounding boxes for point clouds using
pointnet++ as its backbone network. The bounded zones are
then fine-tuned by a point network. Incorporating both
traditional and nontraditional elements SECOND, Point-Pillars
[18] for 3D object detection in point clouds. By organizing local
point sets on a regular grid, Pointnet is able to extract features
and make convolution more manageable. When compared to
the point cloud structure, the grid’s regularity falls short, even

after local smoothing. Graph neural networks attempt to
generalize convolutional neural networks to graphs. Iterative
edge summarization updates GNN vertex features[19]. GNNs’
aggregation method is similar to deep learning on sets, but
they’re better at identifying periphery features. It rarely samples
and labels vertices again. Some computer vision methods use a
point cloud graph. As described, semantic segmentation
involves decomposing a point cloud into simple geometric
shapes and linking them with a network, GNNs can categorize
point clouds. There hasn’t been another approach like ours
before because the study custom-made a GNN to find objects.
By using a graph representation, the study is able to keep the
original geometry of a point cloud intact, as opposed to trying
to flatten it into an image or voxel grid. In contrast to methods
that necessitate collecting and sorting a large amount of data
into sets, the study only needs to construct the graph once. The
proposed GCN-Net continuously refines vertex features on the
same graph after the initial feature extraction. As opposed to the
multi-stage procedures used in, our work only requires a single
stage of detection.

III. METHODOLOGY

A. Graph Formation:

Let's assume, a point cloud is defined as C = {c1, c2, ..., cN}
where each individual point is described as a pair (xi, si), and
𝑥𝑖 ∈ 𝑅3 denotes the 3-dimensional coordinates and 𝑠𝑖 ∈ 𝑅𝑘 is a
vector of length k representing the point's characteristics. To
construct a graph G(C,Ed) from the point cloud C, the points
(C) are utilized as vertices and connections (Ed) are made
between neighboring points within a specified radius denoted
as (r):

Creating point-cloud graph presents a widely recognized
challenge known as the fixed-radius near-neighbor search
problem. To solve this problem efficiently, a cell list approach
is used to identify points that are within a given cutoff distance.
This results in a computational complexity of O(cN); here c is
the highest point number that falls into the specified radius.
Many real-world point clouds have hundreds or even several
thousands of points, making graphs where all the points are
vertices, computationally demanding. To fix this, the study
employs a down-sampled point cloud C′ with voxels that dilute
point density.

AJSE Volume 23, Issue 1, Page 11- 16 Page 12

Figure 1: GCN-Net algorithm architecture with three major components: Graph formation from raw point cloud data, object
detection using GNN network from constructed graph input and finally class prediction and localization.

But don’t reflect the cloud. Downsampled clouds are graphed.
Vertex initial state values include dense cloud information. A
neural network extracts traits from source points within r0
radius of each vertex. Subsequently, a Multi-Layer Perceptron
(MLP) integrates data from lidar reflection intensity and
relative coordinates. The resultant features are then combined
using the Max function to create the initial state value of the
vertex. Following this, a Graph Neural Network (GNN)
examines the structure of the graph.

B. Point Cloud Registration (GNN based):

A graph neural network (GNN) updates vertex features by
consolidating feature information from the neighboring edges
[20]. The updating process happens during each iteration,
where updating vertex features happen in the (n + 1)th iteration
using these equations:

The edge features, denoted as 𝑝𝑛( 𝑣𝑖𝑛  ,  𝑣𝑗𝑛) and vertex features,
denoted as 𝑦𝑛 are taken from the 𝑛𝑡ℎ iteration. Here, 𝑝𝑛(.)
performs calculation of the edge feature in-between vertices,
and 𝜎(.) which is a set function, accumulates each vertex's edge
features. The vertex features are then updated by 𝑞𝑛(.) using
the aggregated edge features. This process is repeated in
subsequent iterations until the final output of the vertex features
is produced. GNNs enhance vertex states to integrate object
information in object detection. To achieve this target, the
equation is modified to consider the states of the vertex's
neighbors in refining the vertex's state:

Here, the the graph neural network's edge feature is denoted as
𝑒𝑛 and edge feature function (𝑝𝑛(.)) uses a vertex's neighbors'
relative coordinates. The network's insensitivity to point cloud
global shift provides translation invariance. It is nevertheless
sensitive to local neighborhood translations, which increases
input variance to 𝑝𝑛(.). Instead of matching neighbors'
coordinates with the central vertex's, structural characteristics
might minimize variation, predict an alignment offset. Using
this information, here a point cloud registration technique has
been introduced in this work, using structural knowledge from
prior iterations at the central vertex:

𝑢𝑛(𝑠𝑖)

𝑛 indicates vertex coordinate changes. 𝑢𝑛(.) uses the
previous center vertex state to calculate the offset. Setting 𝑢𝑛(.)
to zero disables the offset and returns the graph neural network
(GNN) to Equation (3).

𝑀𝐿𝑃ℎ
𝑡  ( 𝑠𝑖

𝑡  ) = ∆𝑥𝑖
𝑡

The functions 𝑝𝑛(.), 𝑞𝑛(.), and 𝑢𝑛(.) are modeled using
multi-layer perceptrons (𝑓𝜂) and an additional connection is
added to 𝑞𝑛(.). Max is chosen as 𝜎(.) due to its stability. A
single iteration in the GNN is defined as follows:

The feed forward graph neural network iterates T times with a
unique set of multi-layer perceptron denoted as (𝑓𝜂𝑛) After T
iterations, the vertex state value predicts the object’s category
and bounding box.

C. Loss:

The classification branch creates vertex probability
distributions for M object classes, including the background
class, denoted as 𝑝𝑐1 , ..., 𝑝𝑐𝑀. Vertices within bounding boxes
are allocated object classes, whereas those outsides are assigned
backdrop classes. Classification loss is average cross entropy
[21]:

Here, 𝑝𝑐𝑖 is the expected probability and 𝑦𝑐𝑖 ‘s each vertex's
one-hot class label. The object bounding box's center position
(𝑥 ,  𝑦 ,  𝑧)  length (𝑙)  height (ℎ) , width (𝑤) , and yaw angle
(𝑥 ,  𝑦 ,  𝑧)  are predicted in a 7-degree-of-freedom format.
Vertex coordinates (𝑥𝑣  ,  𝑦𝑣  ,  𝑧𝑣)  used to encode the bounding
box as the following equation:

In the event that a vertex falls within a bounding box, the
disparity between the projected value and the true value (ground
truth) is computed through employment of the Huber loss.
When a vertex is positioned beyond the bounds of any bounding
boxes or pertains to a class not necessitating localization, the
localization loss is assigned a value of zero. The average of all
the localization losses are then taken, considering constant scale
factors

To avoid overfitting, the study have added L1 regularization to
each multi-layer perceptron [22]. The final loss is (calculated
by balancing the individual losses using constant weights α, β,
and γ):

IV. EXPERIMENT
KITTI object detection [10] was used to test our design. 7380

training and 7619 testing samples both have a point cloud and
camera picture. The study only processed the point cloud inside
the image’s field of view to match the dataset’s annotations.
The KITTI benchmark measures car, pedestrian, and cyclist
accuracy. Cars and Pedestrians/Cyclists have distinct networks
to manage scale. Filtered training samples included only items
of interest. The graph neural network featured three iterations,
limiting to 128 input edges per vertex during training and using

AJSE Volume 23, Issue 1, Page 11- 16 Page 13

all input edges during inference. A two-layer MLP with 32 first-
layer units and 3 second-layer units was used for auto-
registration. The classification branch was a 32-unit single-
layer MLP with the number of classes as output size. The
localization branch featured a three-layer MLP with 32 units per
layer and 7 outputs. The network was trained end-to-end with a
batch size of 4 and loss weights of α = 0.1, β = 10, γ = 5e-7.
Stochastic gradient descent with staircase learning-rate decay
optimized. The Car network was trained for 1600K steps using
a 0.15 initial learning rate and 0.12 decay rate per 500K steps.
The Pedestrian and Cyclist network learned 0.38 and decayed
0.2 per 500K steps. It was trained for 1500K steps. Car
bounding boxes (3.9m, 1.6m, 1.4m) set (lm , hm , wm) to the
median. Automobiles seen from the side with angles between
−π/4 and π/4 are one class, whereas cars viewed from the front
with angles between π/4 and 3π/4 are another class. Angle
threshold is π/2. Four classes, including “Background” and
“DoNotCare”, result. The graph has a minimum distance of 1m
and a range of 4m. The point cloud is down-sampled to P′ with
0.9-meter voxels during training and 0.4 meters during
inference. MLP and MLP g have identical sizes (350, 350). An
MLP of size (64, 128, 256, 512) embeds the raw points, while
another MLP of size (512, 512) does the Max aggregation.
NMS cutoff is 0.012. The median bounding box size is (lm , hm ,
wm), with Pedestrian at (0.88m, 1.77m, 0.65m) and Cyclist at
1.76m, 1.75m, 0.6m. The front view, side-view, Background,
and Do not Care classes are classed similarly to the Car class,
resulting in 6 projected classes. The graph has a radius of r =
1.6m and voxel down-sampling of 0.4 meters for training and
0.2 meters for inference. MLPf and MLPg have vertex state

initializations of r0 = 0.4m and MLP configurations of (256,
256). The embedding uses a MLP of (64, 128, 256, 512, 1024),
whereas the aggregated feature uses (512, 512). NMS threshold
is 0.22. The study augment training data to prevent overfitting.
The study use global rotations, global flip, box translation, and
vertex jitter to create novel ground truth boxes instead of
complex methods. The point cloud undergoes random yaw
rotations and x-axis flipping with a probability of 0.5 during
training. Subsequently, each box and its associated points
within a 110% area of the box undergo random shift by (∆x ∼
N(0, 3), ∆y = 0, ∆z = 3). Point selection uses a 10% larger box
to avoid object truncation. The study also avoid box and
background point collisions during translation. Vertex jitter is
created by random voxel down-sampling during graph
formation.

V. RESULT
The efficacy of the Bird’s Eye View (BEV) object

identification benchmark and the KITTI 3D object recognition
benchmark has been subjected to scrutiny. Our findings are
evaluated in the context of prior studies. The KITTI dataset is
characterized by three different levels of difficulty, categorized
as” easy,”” moderate,” and ”hard.” The overall precision
metric, referred to as the” Average Precision” (AP), is
computed across all three difficulty levels. Our results
demonstrate state-of-the-art performance across all three
difficulty levels of the Car Detection problem, as well as the
Cyclist Detection challenge.

Method Mode Bicyclist Car Pedestrian
LiDAR Image Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet[4] Yes No 67.17 47.64 45.11 81.97 65.46 62.85 57.86 53.42 48.87
AVOD-FPN[21] Combined 64.00 52.18 46.61 81.94 71.88 66.38 50.80 42.81 40.88

SECOND[22] Yes No 70.51 53.85 53.85 83.13 73.66 66.20 51.07 42.56 37.29
PointPillers[18] Yes No 75.78 59.07 52.92 79.05 74.99 68.30 52.08 43.53 41.49
PointRCNN[23] Yes No 73.93 59.60 53.59 85.94 75.76 68.32 49.43 41.78 38.63
F-PointNet[15] Combined 71.96 56.77 50.39 81.20 70.39 62.19 51.21 44.89 40.23

GCN-Net (Ours) Yes No 79.36 62.45 58.09 87.32 79.55 73.19 51.92 43.77 40.14

Table 1: AP (average precision) comparison table of 3D object detection on KITTI(test) dataset.

 Method Mode Bicyclist Car Pedestrian
LiDAR Image Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet[4] Yes No 74.41 52.18 50.49 89.60 84.81 78.57 57.86 53.42 48.87
AVOD-FPN[21] Combined 68.06 57.48 50.77 88.53 83.79 77.90 58.75 51.05 47.54

SECOND[22] Yes No 73.67 56.04 48.78 88.07 79.37 77.95 55.10 46.27 44.76
PointPillers[18] Yes No 79.14 62.25 56.00 88.35 86.10 79.83 58.66 50.23 47.19
PointRCNN[23] Yes No 81.04 65.32 57.85 89.66 87.76 86.89 60.99 51.39 45.89
F-PointNet[15] Combined 75.38 61.96 54.68 88.70 84.00 75.33 58.09 50.22 47.20

GCN-Net (Ours) Yes No 80.28 68.23 58.69 92.12 88.29 84.92 56.63 48.12 45.53

 Table 2: AP (average precision) comparison table of BE (bird’s eye view) object detection on KITTI(test) dataset.

It is noteworthy that even in the” Easy” setting, the BEV Car
Detection configuration exhibits remarkable performance. Our

results, with the exception of pedestrian detection, were
comparable with prior fusion-based systems in all other

AJSE Volume 23, Issue 1, Page 11- 16 Page 14

categories. Our methodology also provides qualitative
outcomes for each classification. The camera imagery and point
cloud visualization serve as the sole source of information for
our approach. Due to the absence of ground truth labels in the
test dataset, the camera imagery is utilized solely for visual
inspection. Despite not achieving a perfect score, our system
exhibits a commendable degree of accuracy in recognizing

pedestrians. The lower vertex density of the point cloud may
contribute to the difficulties in constructing more accurate
bounding boxes for pedestrian identification, thereby
explaining its lower accuracy compared to vehicle and bicycle
detection.

Figure 2: Pedestrian, Cyclist and Car are detected with their assigned bounding box which is green for Car, red for Pedestrian

and blue for Cyclist. Object detection done on both images and point clouds.

VI. CONCLUSION
A graph neural network (GCN-Net) identifies three-
dimensional objects in a point cloud. A graph model of the point
cloud organizes the points without grid mapping or iterative
sampling and grouping, resulting in a more compact data
representation. CNNs and GNNs show great potential for
applications in sectors such as drug development, fraud
detection, traffic forecasting, and cybersecurity because of their
capacity to evaluate intricate data structures and interactions
efficiently. CNNs are used for forecasting drug-target
interactions, whereas GNNs have been employed to anticipate
drug-target affinity [20]. CNNs are used for image analysis
tasks such as signature verification and document
authentication in fraud detection, whereas GNNs are employed
to identify fraudulent trends by analysing complicated
connections in financial transaction data. CNNs are frequently
used in cybersecurity for tasks such as detecting malware via
file content analysis, whereas GNNs can scan network traffic
data to identify abnormalities or intrusions. Our GCN-Net
performs the best in KITTI benchmark object identification
from both three-dimensional and bird’s-eye views. Our
research shows that our auto-registration approach, aided by a
box merging and scoring procedure, may improve detection
accuracy and reduce transition variation. The study wants to
speed up inference by combining sensor data into a single
stream.

REFERENCES
[1] M. Faisal, M. Algabri, and M. A. Mekhtiche, “Smart and

Fully Functional Mobile-Robot Navigation System,” in 2021

7th International Conference on Control, Automation and

Robotics (ICCAR), 2021, pp. 76–83.
[2] Y. Chen, Y. Gao, and Y. Xu, “Research on Localization

Method of Driverless Car Based on Fusion of GNSS and
Laser SLAM,” in 2022 IEEE International Conference on

Robotics and Biomimetics (ROBIO), 2022, pp. 2134–2139.
[3] J. Gu et al., “Recent advances in convolutional neural

networks,” Pattern Recognit., vol. 77, pp. 354–377, 2018.
[4] V. S. Rozario and P. Sutradhar, “In-Depth Case Study on

Artificial Neural Network Weights Optimization Using Meta-
Heuristic and Heuristic Algorithmic Approach,” AIUB J. Sci.

Eng., vol. 21, no. 2, pp. 98–109, 2022.
[5] Y. Li et al., “Deep learning for lidar point clouds in

autonomous driving: A review,” IEEE Trans. Neural

Networks Learn. Syst., vol. 32, no. 8, pp. 3412–3432, 2020.
[6] M. Zhang, Y. Wang, P. Kadam, S. Liu, and C.-C. J. Kuo,

“Pointhop++: A lightweight learning model on point sets for
3d classification,” in 2020 IEEE International Conference on

Image Processing (ICIP), 2020, pp. 3319–3323.
[7] S. Zheng and M. Castellani, “Primitive shape recognition

from real-life scenes using the PointNet deep neural
network,” Int. J. Adv. Manuf. Technol., vol. 124, no. 9, pp.
3067–3082, 2023.

[8] S. Hoque, M. Y. Arafat, S. Xu, A. Maiti, and Y. Wei, “A
comprehensive review on 3D object detection and 6D pose
estimation with deep learning,” IEEE Access, vol. 9, pp.
143746–143770, 2021.

[9] R. Shahrear, M. A. Rahman, A. Islam, C. Dey, and M. S. R.
Zishan, “An automatic traffic rules violation detection and
number plate recognition system for Bangladesh,” AIUB J.

Sci. Eng., vol. 19, no. 2, pp. 87–98, 2020.
[10] H. S. Gujjar, “A comparative study of VoxelNet and PointNet

for 3D object detection in car by using KITTI benchmark,”
Int. J. Inf. Commun. Technol. Hum. Dev., vol. 10, no. 3, pp.
28–38, 2018.

[11] J. Behley et al., “Towards 3D LiDAR-based semantic scene
understanding of 3D point cloud sequences: The
SemanticKITTI Dataset,” Int. J. Rob. Res., vol. 40, no. 8–9,
pp. 959–967, 2021.

[12] Z. Wang, W. Zhan, and M. Tomizuka, “Fusing bird’s eye
view lidar point cloud and front view camera image for 3d

AJSE Volume 23, Issue 1, Page 11- 16 Page 15

object detection,” in 2018 IEEE intelligent vehicles

symposium (IV), 2018, pp. 1–6.
[13] A. Ghasemieh and R. Kashef, “3D object detection for

autonomous driving: Methods, models, sensors, data, and
challenges,” Transp. Eng., vol. 8, p. 100115, 2022.

[14] A. Parashar et al., “SCNN: An accelerator for compressed-
sparse convolutional neural networks,” ACM SIGARCH

Comput. Archit. news, vol. 45, no. 2, pp. 27–40, 2017.
[15] A. Garcia-Garcia, F. Gomez-Donoso, J. Garcia-Rodriguez, S.

Orts-Escolano, M. Cazorla, and J. Azorin-Lopez, “Pointnet:
A 3d convolutional neural network for real-time object class
recognition,” in 2016 International joint conference on

neural networks (IJCNN), 2016, pp. 1578–1584.
[16] M. Soelch, A. Akhundov, P. van der Smagt, and J. Bayer, “On

deep set learning and the choice of aggregations,” in Artificial

Neural Networks and Machine Learning--ICANN 2019:

Theoretical Neural Computation: 28th International

Conference on Artificial Neural Networks, Munich, Germany,

September 17--19, 2019, Proceedings, Part I 28, 2019, pp.
444–457.

[17] Y. Xu, F. Li, and A. Asgari, “Prediction and optimization of
heating and cooling loads in a residential building based on
multi-layer perceptron neural network and different
optimization algorithms,” Energy, vol. 240, p. 122692, 2022.

[18] J. Tu, P. Wang, and F. Liu, “PP-RCNN: Point-Pillars Feature
Set Abstraction for 3D Real-time Object Detection,” in 2021

International Joint Conference on Neural Networks (IJCNN),
2021, pp. 1–8.

[19] Y. Wu et al., “Seastar: vertex-centric programming for graph
neural networks,” in Proceedings of the Sixteenth European

Conference on Computer Systems, 2021, pp. 359–375.
[20] B. T. Yaseen, “Drug Target Interaction Prediction Using

Convolutional Neural Network (CNN),” in 2023 5th

International Congress on Human-Computer Interaction,

Optimization and Robotic Applications (HORA), 2023, pp. 1–
5.

Mr. Ahmed Abdullah has a Master's
degree in computer science from Bishop
University in Canada and a Bachelor of
Science degree in Electrical and
Electronic Engineering from American
International University-Bangladesh. He
has accumulated eight years of teaching
experience in the CSE department of
Royal University Dhaka. He is certified in
CCNA, CompTIA, and CEH. He has co-
authored or produced several scientific

publications and has taken part in many national and international
conferences cantered on Data Science, Machine Learning, and IoT.

 Mehzabul Hoque Nahid is an Assistant
Professor in the Department of
Management Information Systems at the
American International University-
Bangladesh. He has been a distinguished
faculty member since 2015. He is now
studying for a Doctor of Philosophy
degree in Business and Management at
Management Science University-
Malaysia (MSU). He finished his
postgraduate studies in Information

Technology at Swinburne University of Technology in Australia,
earning a master’s degree. Prior to becoming an academic, he acquired
professional experience via employment at several local and
worldwide companies.

AJSE Volume 23, Issue 1, Page 11- 16 Page 16

