
Abstract— This study aims to demonstrate the application of a 
graph convolutional neural network for the purpose of object 
detection in a LiDAR point cloud. To achieve efficient encoding of 
the point cloud, the research used a near-neighbours graph with a 
predetermined radius. The study created a graph convolutional 
neural network so that study can find out what kind of object and 
what class each vertex in a graph actually represents. The research 
developed a box merging and scoring operation to reliably 
integrate detections from multiple vertices into a single score, as 
well as an auto-registration technique to reduce the amount of 
internal translation errors. Based on the findings obtained from 
our experimentation using the KITTI benchmark, the research 
has arrived at the inference that the proposed technique 
demonstrates a commendable level of precision when compared to 
the point cloud. In fact, in some cases, it outperforms fusion-based 
methods. Based on the findings of our study, it can be concluded 
that the graph neural network has promising potential as a novel 
and efficient tool for the identification and recognition of three-
dimensional objects. 

Index Terms—Graph Convolutional Neural Network, Point 
Clouds, Multilayer Perceptron, Object Detection, Localization, 
Semantic KITTI. 

I. INTRODUCTION

It is essential for robot perception [1] to have a three-
dimensional understanding of the surrounding world. It is 
common practice for 3D sensors such as LiDAR to store their 
data in the form of point clouds, which are collections of points 
dispersed throughout space. It is vital for several applications, 
such as autonomous driving [2], to have precise object detection 
derived from a point cloud. In order to recognize objects in 
photographs, convolutional neural networks {Formatting 
Citation} must first perform the convolutional operation. The 
method of convolution is quite effective, but the input must be 
in the form of a regular grid. In contrast to an image, a point 
cloud often has a more dispersed and uneven distribution of its 
points. When a point cloud is superimposed on a regular grid, 
an uneven distribution of points results in each grid cell. If the 
same convolution technique is applied to such a grid, it is 
possible that there may be information loss in the cells that have 
a high population density and superfluous processing in the 
cells that are empty. Recent developments in neural network 
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technology have made it possible to enter a set of points in any 
order. In the field of research, this particular type of neural 
network is applied to extract attributes of point clouds without 
first mapping the point clouds to a grid [5]. In most cases, 
however, in order to cons truct a representation of a point set, 
they are required to sample and aggregate points in an iterative 
manner. The process of repeatedly grouping and sampling a 
large point cloud might incur significant processing costs [6], 
[7]. Many modern 3D detection algorithms make use of a 
hybrid strategy that blends grid and set representations at 
different points of the detection process [8]. Despite the fact that 
hybrid approaches have shown some encouraging results, it is 
possible that they are prone to the limitations of both types of 
representation. In this paper, the study propose the use of a 
graph as a condensed representation of a point cloud and the 
creation of a graph neural network that the study will refer to as 
GCNnet for the purpose of object detection [9]. The study 
possess the capability to inherently represent the point cloud 
within a graph structure, accomplishing this by directly 
associating the points with the graph’s vertices. The graph’s 
edges establish connections between adjacent positions within 
a predefined radius, thereby facilitating the transfer of feature 
information among proximate neighbors. A point cloud can be 
represented by such a graph in such a way that it conforms 
directly to the structure of the point cloud, eliminating the need 
for any kind of regularization. A graph neural network avoids 
constantly grouping and sampling points by recycling graph 
edges at each layer and does so throughout the network. 
Research has been conducted on the topic of semantic 
segmentation and classification of point clouds with graph 
neural networks. However, graph neural networks have only 
been the subject of a small number of studies looking into 3D 
object detection in point clouds. Our study indicates that it is 
possible to use Graph-CNN for extremely precise object 
detection in a point cloud by utilizing it to analyze the data. The 
point graph is an acceptable kind of input for the GCNnet that 
the study have suggested. It will generate both the category and 
the bounding boxes associated with each linked item for every 
vertex. This method constitutes a single-step procedure capable 
of detecting numerous distinct elements within a single scan of 
the region. To mitigate the influence of translation-induced 
variations in a graph neural network, the study introduce a point 
cloud registration technique. When applied, this method 
facilitates the alignment of point coordinates based on their 
inherent characteristics. The KITTI [10] evaluation serves as a 
standard for the technique that has been suggested [11]. Our 
GCNnet illustrates the promise of a new form of 3D object 
detection approach based on graph neural networks, and it can 
serve as a solid foundation for further research. This method is 
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based on graph neural networks. 

II. RELATED WORD
Using a convolutional neural network (CNN), the authors of the 
publication [3] were able to identify individual points inside a 
point cloud. In order to evaluate the point cloud, a Bird’s Eye 
View (BEV) [12] is first created, which is a 2D picture. Using 
a picture of the front elevation (FV) does the same thing. 
However, a phenomenon called quantization error may occur 
during the process of reducing a 3D picture to a 2D format. 
Some solutions to this problem include preserving the point 
cloud’s 3D structure. VoxelNet is a technique for 3D object 
detection [13] that works by using 3D voxels (volumetric 
pixels) to represent points in the point cloud. However, as the 
resolution of the voxels becomes higher, the computational cost 
of employing 3D convolution rises. Sparse convolution [14] is 
one method that may be utilized to increase productivity. It’s 
important to remember that transforming a point cloud into a 
2D or 3D grid might result in a misalignment between the point 
cloud’s organization and the grid’s uniformity. The examples 
of PointNet[15] and DeepSet[16] demonstrate how neural 
networks can be used to directly extract attributes from an 
unsorted set of points. The data from each point is fed into a 
multi-layer perceptron (MLP) [17], which outputs a feature 
vector. All of these characteristics are represented in a single 
vector by a mean or maximum function. In order to aggregate 
point attributes in a hierarchical fashion, Pointnet++[15] takes 
samples from the neighborhood of nodes to generate local 
subsets of points. The study then generates new sets from these 
groups in order to extract more characteristics. Neural networks 
are used in several 3D object detection methods because of their 
ability to process point clouds without grids. More 
computational power is needed for large-scale point sampling 
and clustering. The neural network on sets is used exclusively 
in the object detection research. In order to predict 3D object 
bounding boxes, the paper [7] employs Pointnet++ to segment 
camera images into object and background points. Pointrcnn 
[18] proposes bounding boxes for point clouds using
pointnet++ as its backbone network. The bounded zones are
then fine-tuned by a point network. Incorporating both
traditional and nontraditional elements SECOND, Point-Pillars
[18] for 3D object detection in point clouds. By organizing local
point sets on a regular grid, Pointnet is able to extract features
and make convolution more manageable. When compared to
the point cloud structure, the grid’s regularity falls short, even

after local smoothing. Graph neural networks attempt to 
generalize convolutional neural networks to graphs. Iterative 
edge summarization updates GNN vertex features[19]. GNNs’ 
aggregation method is similar to deep learning on sets, but 
they’re better at identifying periphery features. It rarely samples 
and labels vertices again. Some computer vision methods use a 
point cloud graph. As described, semantic segmentation 
involves decomposing a point cloud into simple geometric 
shapes and linking them with a network, GNNs can categorize 
point clouds. There hasn’t been another approach like ours 
before because the study custom-made a GNN to find objects. 
By using a graph representation, the study is able to keep the 
original geometry of a point cloud intact, as opposed to trying 
to flatten it into an image or voxel grid. In contrast to methods 
that necessitate collecting and sorting a large amount of data 
into sets, the study only needs to construct the graph once. The 
proposed GCN-Net continuously refines vertex features on the 
same graph after the initial feature extraction. As opposed to the 
multi-stage procedures used in, our work only requires a single 
stage of detection. 

III. METHODOLOGY

A. Graph Formation:

Let's assume, a point cloud is defined as C = {c1, c2, ..., cN} 
where each individual point is described as a pair (xi, si), and 
𝑥𝑖 ∈ 𝑅3 denotes the 3-dimensional coordinates and 𝑠𝑖 ∈ 𝑅𝑘 is a
vector of length k representing the point's characteristics. To 
construct a graph G(C,Ed) from the point cloud C, the points 
(C) are utilized as vertices and connections (Ed) are made
between neighboring points within a specified radius denoted
as (r):

Creating point-cloud graph presents a widely recognized 
challenge known as the fixed-radius near-neighbor search 
problem. To solve this problem efficiently, a cell list approach 
is used to identify points that are within a given cutoff distance. 
This results in a computational complexity of O(cN ); here c is 
the highest point number that falls into the specified radius. 
Many real-world point clouds have hundreds or even several 
thousands of points, making graphs where all the points are 
vertices, computationally demanding. To fix this, the study 
employs a down-sampled point cloud C′ with voxels that dilute 
point density.   
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Figure 1: GCN-Net algorithm architecture with three major components: Graph formation from raw point cloud data, object 
detection using GNN network from constructed graph input and finally class prediction and localization.  

 
But don’t reflect the cloud. Downsampled clouds are graphed. 
Vertex initial state values include dense cloud information. A 
neural network extracts traits from source points within r0 
radius of each vertex. Subsequently, a Multi-Layer Perceptron 
(MLP) integrates data from lidar reflection intensity and 
relative coordinates. The resultant features are then combined 
using the Max function to create the initial state value of the 
vertex. Following this, a Graph Neural Network (GNN) 
examines the structure of the graph. 

B. Point Cloud Registration (GNN based): 

A graph neural network (GNN) updates vertex features by 
consolidating feature information from the neighboring edges 
[20]. The updating process happens during each iteration, 
where updating vertex features happen in the (n + 1)th iteration 
using these equations: 

 
The edge features, denoted as 𝑝𝑛( 𝑣𝑖𝑛  ,  𝑣𝑗𝑛) and vertex features, 
denoted as 𝑦𝑛 are taken from the 𝑛𝑡ℎ iteration. Here, 𝑝𝑛(. ) 
performs calculation of the edge feature in-between vertices, 
and 𝜎(. ) which is a set function, accumulates each vertex's edge 
features. The vertex features are then updated by 𝑞𝑛(. ) using 
the aggregated edge features. This process is repeated in 
subsequent iterations until the final output of the vertex features 
is produced. GNNs enhance vertex states to integrate object 
information in object detection. To achieve this target, the 
equation is modified to consider the states of the vertex's 
neighbors in refining the vertex's state:  

 
Here, the the graph neural network's edge feature is denoted as 
𝑒𝑛 and  edge feature function (𝑝𝑛(. )) uses a vertex's neighbors' 
relative coordinates. The network's insensitivity to point cloud 
global shift provides translation invariance. It is nevertheless 
sensitive to local neighborhood translations, which increases 
input variance to 𝑝𝑛(. ). Instead of matching neighbors' 
coordinates with the central vertex's, structural characteristics 
might minimize variation, predict an alignment offset. Using 
this information, here a point cloud registration technique has 
been introduced in this work, using structural knowledge from 
prior iterations at the central vertex: 

 

 
𝑢𝑛(𝑠𝑖)

𝑛 indicates vertex coordinate changes. 𝑢𝑛(. ) uses the 
previous center vertex state to calculate the offset. Setting 𝑢𝑛(. ) 
to zero disables the offset and returns the graph neural network 
(GNN) to Equation (3). 

𝑀𝐿𝑃ℎ
𝑡  ( 𝑠𝑖

𝑡  ) = ∆𝑥𝑖
𝑡 

The functions 𝑝𝑛(. ), 𝑞𝑛(. ), and 𝑢𝑛(. ) are modeled using 
multi-layer perceptrons (𝑓𝜂) and an additional connection is 
added to 𝑞𝑛(. ). Max is chosen as 𝜎(. ) due to its stability. A 
single iteration in the GNN is defined as follows: 

 
The feed forward graph neural network iterates T times with a 
unique set of multi-layer perceptron denoted as (𝑓𝜂𝑛) After T 
iterations, the vertex state value predicts the object’s category 
and bounding box.  

C. Loss:  

The classification branch creates vertex probability 
distributions for M object classes, including the background 
class, denoted as 𝑝𝑐1 , ..., 𝑝𝑐𝑀. Vertices within bounding boxes 
are allocated object classes, whereas those outsides are assigned 
backdrop classes. Classification loss is average cross entropy 
[21]:  

 
Here, 𝑝𝑐𝑖  is the expected probability and 𝑦𝑐𝑖  ‘s each vertex's 
one-hot class label. The object bounding box's center position 
(𝑥 ,  𝑦 ,  𝑧)  length (𝑙)  height (ℎ) , width (𝑤) , and yaw angle 
(𝑥 ,  𝑦 ,  𝑧)  are predicted in a 7-degree-of-freedom format. 
Vertex coordinates (𝑥𝑣  ,  𝑦𝑣  ,  𝑧𝑣)  used to encode the bounding 
box as the following equation: 

 
In the event that a vertex falls within a bounding box, the 
disparity between the projected value and the true value (ground 
truth) is computed through employment of the Huber loss. 
When a vertex is positioned beyond the bounds of any bounding 
boxes or pertains to a class not necessitating localization, the 
localization loss is assigned a value of zero. The average of all 
the localization losses are then taken, considering constant scale 
factors  

 
To avoid overfitting, the study have added L1 regularization to 
each multi-layer perceptron [22]. The final loss is (calculated 
by balancing the individual losses using constant weights α, β, 
and γ): 

 

IV. EXPERIMENT 
KITTI object detection [10] was used to test our design. 7380 

training and 7619 testing samples both have a point cloud and 
camera picture. The study only processed the point cloud inside 
the image’s field of view to match the dataset’s annotations. 
The KITTI benchmark measures car, pedestrian, and cyclist 
accuracy. Cars and Pedestrians/Cyclists have distinct networks 
to manage scale. Filtered training samples included only items 
of interest. The graph neural network featured three iterations, 
limiting to 128 input edges per vertex during training and using 
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all input edges during inference. A two-layer MLP with 32 first-
layer units and 3 second-layer units was used for auto-
registration. The classification branch was a 32-unit single-
layer MLP with the number of classes as output size. The 
localization branch featured a three-layer MLP with 32 units per 
layer and 7 outputs. The network was trained end-to-end with a 
batch size of 4 and loss weights of α = 0.1, β = 10, γ = 5e-7. 
Stochastic gradient descent with staircase learning-rate decay 
optimized. The Car network was trained for 1600K steps using 
a 0.15 initial learning rate and 0.12 decay rate per 500K steps. 
The Pedestrian and Cyclist network learned 0.38 and decayed 
0.2 per 500K steps. It was trained for 1500K steps. Car 
bounding boxes (3.9m, 1.6m, 1.4m) set (lm , hm , wm) to the 
median. Automobiles seen from the side with angles between 
−π/4 and π/4 are one class, whereas cars viewed from the front 
with angles between π/4 and 3π/4 are another class. Angle 
threshold is π/2. Four classes, including “Background” and 
“DoNotCare”, result. The graph has a minimum distance of 1m 
and a range of 4m. The point cloud is down-sampled to P′ with 
0.9-meter voxels during training and 0.4 meters during 
inference. MLP and MLP g have identical sizes (350, 350). An 
MLP of size (64, 128, 256, 512) embeds the raw points, while 
another MLP of size (512, 512) does the Max aggregation. 
NMS cutoff is 0.012. The median bounding box size is (lm , hm , 
wm), with Pedestrian at (0.88m, 1.77m, 0.65m) and Cyclist at 
1.76m, 1.75m, 0.6m. The front view, side-view, Background, 
and Do not Care classes are classed similarly to the Car class, 
resulting in 6 projected classes. The graph has a radius of r = 
1.6m and voxel down-sampling of 0.4 meters for training and 
0.2 meters for inference. MLPf and MLPg have vertex state 

initializations of r0 = 0.4m and MLP configurations of (256, 
256). The embedding uses a MLP of (64, 128, 256, 512, 1024), 
whereas the aggregated feature uses (512, 512). NMS threshold 
is 0.22. The study augment training data to prevent overfitting. 
The study use global rotations, global flip, box translation, and 
vertex jitter to create novel ground truth boxes instead of 
complex methods. The point cloud undergoes random yaw 
rotations and x-axis flipping with a probability of 0.5 during 
training. Subsequently, each box and its associated points 
within a 110% area of the box undergo random shift by (∆x ∼ 
N(0, 3), ∆y = 0, ∆z = 3). Point selection uses a 10% larger box 
to avoid object truncation. The study also avoid box and 
background point collisions during translation. Vertex jitter is 
created by random voxel down-sampling during graph 
formation. 

V. RESULT 
The efficacy of the Bird’s Eye View (BEV) object 

identification benchmark and the KITTI 3D object recognition 
benchmark has been subjected to scrutiny. Our findings are 
evaluated in the context of prior studies. The KITTI dataset is 
characterized by three different levels of difficulty, categorized 
as” easy,”” moderate,” and ”hard.” The overall precision 
metric, referred to as the” Average Precision” (AP), is 
computed across all three difficulty levels. Our results 
demonstrate state-of-the-art performance across all three 
difficulty levels of the Car Detection problem, as well as the 
Cyclist Detection challenge. 

 

Method Mode Bicyclist Car Pedestrian 
LiDAR Image Easy  Moderate Hard Easy Moderate Hard Easy Moderate Hard 

VoxelNet[4] Yes No 67.17 47.64 45.11 81.97 65.46 62.85 57.86 53.42 48.87 
AVOD-FPN[21] Combined 64.00 52.18 46.61 81.94 71.88 66.38 50.80 42.81 40.88 

SECOND[22] Yes No 70.51 53.85 53.85 83.13 73.66 66.20 51.07 42.56 37.29 
PointPillers[18] Yes No 75.78 59.07 52.92 79.05 74.99 68.30 52.08 43.53 41.49 
PointRCNN[23] Yes No 73.93 59.60 53.59 85.94 75.76 68.32 49.43 41.78 38.63 
F-PointNet[15] Combined 71.96 56.77 50.39 81.20 70.39 62.19 51.21 44.89 40.23 

GCN-Net (Ours) Yes No 79.36 62.45 58.09 87.32 79.55 73.19 51.92 43.77 40.14 

Table 1: AP (average precision) comparison table of 3D object detection on KITTI(test) dataset. 
 

 Method Mode Bicyclist Car Pedestrian 
LiDAR Image Easy  Moderate Hard Easy Moderate Hard Easy Moderate Hard 

VoxelNet[4] Yes No 74.41 52.18 50.49 89.60 84.81 78.57 57.86 53.42 48.87 
AVOD-FPN[21] Combined 68.06 57.48 50.77 88.53 83.79 77.90 58.75 51.05 47.54 

SECOND[22] Yes No 73.67 56.04 48.78 88.07 79.37 77.95 55.10 46.27 44.76 
PointPillers[18] Yes No 79.14 62.25 56.00 88.35 86.10 79.83 58.66 50.23 47.19 
PointRCNN[23] Yes No 81.04 65.32 57.85 89.66 87.76 86.89 60.99 51.39 45.89 
F-PointNet[15] Combined 75.38 61.96 54.68 88.70 84.00 75.33 58.09 50.22 47.20 

GCN-Net (Ours) Yes No 80.28 68.23 58.69 92.12 88.29 84.92 56.63 48.12 45.53 

    Table 2: AP (average precision) comparison table of BE (bird’s eye view) object detection on KITTI(test) dataset. 
 

It is noteworthy that even in the” Easy” setting, the BEV Car 
Detection configuration exhibits remarkable performance. Our 

results, with the exception of pedestrian detection, were 
comparable with prior fusion-based systems in all other 
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categories. Our methodology also provides qualitative 
outcomes for each classification. The camera imagery and point 
cloud visualization serve as the sole source of information for 
our approach. Due to the absence of ground truth labels in the 
test dataset, the camera imagery is utilized solely for visual 
inspection.  Despite not achieving a perfect score, our system 
exhibits a commendable degree of accuracy in recognizing 

pedestrians. The lower vertex density of the point cloud may 
contribute to the difficulties in constructing more accurate 
bounding boxes for pedestrian identification, thereby 
explaining its lower accuracy compared to vehicle and bicycle 
detection. 

 

 
Figure 2: Pedestrian, Cyclist and Car are detected with their assigned bounding box which is green for Car, red for Pedestrian 

and blue for Cyclist. Object detection done on both images and point clouds. 
 

VI. CONCLUSION 
A graph neural network (GCN-Net) identifies three-
dimensional objects in a point cloud. A graph model of the point 
cloud organizes the points without grid mapping or iterative 
sampling and grouping, resulting in a more compact data 
representation. CNNs and GNNs show great potential for 
applications in sectors such as drug development, fraud 
detection, traffic forecasting, and cybersecurity because of their 
capacity to evaluate intricate data structures and interactions 
efficiently. CNNs are used for forecasting drug-target 
interactions, whereas GNNs have been employed to anticipate 
drug-target affinity [20]. CNNs are used for image analysis 
tasks such as signature verification and document 
authentication in fraud detection, whereas GNNs are employed 
to identify fraudulent trends by analysing complicated 
connections in financial transaction data. CNNs are frequently 
used in cybersecurity for tasks such as detecting malware via 
file content analysis, whereas GNNs can scan network traffic 
data to identify abnormalities or intrusions. Our GCN-Net 
performs the best in KITTI benchmark object identification 
from both three-dimensional and bird’s-eye views. Our 
research shows that our auto-registration approach, aided by a 
box merging and scoring procedure, may improve detection 
accuracy and reduce transition variation. The study wants to 
speed up inference by combining sensor data into a single 
stream. 
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