
AIUB JOURNAL OF SCIENCE AND ENGINEERING
ISSN: 1608 – 3679(print) ISSN 1608 - 3679

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 75

Published in AJSE, Vol:16, Issue: 01

Received on 1st February 2017

Revised on 11th July 2017

Accepted on 12th July 2017

Analysis of the Veracities of Industry Used Software

Development Life Cycle Methodologies

AZM Ehtesham Chowdhury, Abhijit Bhowmik, Hasibul Hasan, Md Shamsur Rahim

Abstract— Currently, software industries are using different

SDLC (software development life cycle) models which are

designed for specific purposes. The use of technology is booming

in every perspective of life and the software behind the

technology plays an enormous role. As the technical complexities

are increasing, successful development of software solely depends

on the proper management of development processes. So, it is

inevitable to introduce improved methodologies in the industry

so that modern human centred software applications

development can be managed and delivered to the user

successfully. So, in this paper, we have explored the facts of

different SDLC models and perform their comparative analysis.

Keywords—Software Development Life Cycle; Plan Driven

Model; Agile Model; Development Environment; Industry Success

I. INTRODUCTION

In the modern world, technology is playing a vital role in
everyday life. To make our life easier, day by day new
technologies are invented and developed. To reach the level of
human comfort, development of the driver software is getting
technically complex. To develop the software, development
process in the software industry must be more dynamic and
adaptive to deal with the complexities [1][2][3]. From several
decades, researchers have proposed several software
development life cycle models [4]. A software development
life cycle model defines the sequential stages of an entire

lifetime of a software product [5]. The model is used to divide
the project into several actions. Each of the activities goal to
provide the good planning and management of the project. The
proper planning and management will allow the development
team to deliver the product in time and minimize the
development cost [6]. From the 60’s several SDLC models
have been proposed and applied to achieve the better
development situation and economic success. SDLC represents
the entire process life based on specification, design,
validation, evolution [7]. The SDLC gives the outline for the
documentation which is necessary to understand client
requirements. SDLC helps to define the budget, schedule of the
software project [8]. It also provides the elements to analyze
time and cost information. SDLC facilitates the guideline to
project manager to organize and planning for the project [9].
SDLC contains a sequence of stages [10] where each of them
can be characterized as follows:

A. Initial Analysis

• Inquire about the organizational objectives.

• Understanding the problems and how to fit with the
organization.

• Interviewing client-side stakeholders (end users).

• Description of cost and benefit.

B. System Requirements

• Identify project goals.

• Identify functionalities.

C. Development

• Code Writing.

D. Deployment

• Initial deployment the project to end users.

E. Maintainance and Evaluation

• Continuous evaluation till final deployment.

• Changes from initial software.

• Assessment of the development process

 AZM Ehtesham Chowdhury

Dept. of CSE

American International University-Bangladesh (AIUB).

Dhaka, Bangladesh
e-mail: ehtesham@aiub.edu

Abhijit Bhowmik

Dept. of CSE

American International University-Bangladesh (AIUB).

Dhaka, Bangladesh
e-mail: abhijit@aiub.edu

Hasibul Hasan

Dept. of CSE

American International University-Bangladesh (AIUB).

Dhaka, Bangladesh
e-mail: hasib.hasan@aiub.edu

Md Shamsur Rahim

Dept. of CSE

American International University-Bangladesh (AIUB).

Dhaka, Bangladesh
e-mail: shamsur@aiub.edu

mailto:ehtesham@aiub.edu
mailto:abhijit@aiub.edu
mailto:hasib.hasan@aiub.edu
mailto:shamsur@aiub.edu

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 76

F. Disposal

• Final version.

• Archive information about the software.

• Prevention from disclosure of any sensitive data.

• Disposal activities must ensure new systems.

Following above characteristics, various SDLC models

have proposed. Some of the popular SDLC models are:
Waterfall, Incremental, Iterative, Spiral, Prototyping, XP,
SCRUM, RAD, DSDM and so on. These models have their
own effectiveness level based on the project and industry.
These models are clustered into two different categories: Agile
Process and Plan Driven Process. A typical software
development process model has generally several stages.
Planning and gathering information about the project, Analyze
and define requirements, Design and define the product
architecture, development, test the product per requirements
and technical perspective, deploy product, maintenance.

Rest of this paper is systematized in following sections: In
section II and III, we have described the plan driven and agile
SDLC models and their advantage and disadvantages. In
section IV, we have provided the comparative analysis of the
facts of plan driven models and agile models and future work
and conclusion in section V.

II. PLAN DRIVEN MODEL

The products are planned and progress is calculated based
on the plan [5]. It is costly to the immediate adaption of
changes in requirements for ongoing projects. A plan driven
model is best suited for the large teams and enormously critical
products which are hard to scale down [11]. These models are
effective when the development environment is stable.
Experienced stakeholders are required only at the beginning of
the project. The success is dependent on structure and order.
But these models are less effective for the dynamic
development environment. If the changes in requirements
befall recurrently, then it is costly [6]. Basic characteristics of
several popular plan driven models are described below based
on their use in industries:

A. Waterfall

The waterfall model is the oldest development life cycle
model. The waterfall follows sequential development approach.
The model facilitates the early planning stages. This model
emphasizes to analyze all the requirements and design of the
software before started developing [12] [13]. Here the
development stages such as requirement analysis, design,
development, testing, maintenance depend on the previous
phase like the designing phase will be started after finishing off
the requirement analysis. So, the software life flows like water
falling from the mountain which we know as waterfall. It is
still the mostly used SDLC. This model recognizes milestones
and widely used for mature products [36]. The waterfall
facilitates with a variance of team members. As all the stages
depend on the previous one, so any severe flaw appears on any
stage the next stages are going to be stuck and go back to

previous stages to update. So, the extra time is elapsed from
planned time duration. This model does not ensure the feature
versions after product deployment.

Fig. 1. Waterfall Model [14]

B. Iterative and Incremental Development Model

 The waterfall model does not accommodate any change or
feedback from early stages. The iterative model is a class of
another plan driven model. The model provides the product to
be divided into small parts where each small part known as
increments, contains all stages like waterfall [15].
Requirements are also divided and prioritized. On the basis of
the requirement set, an increment is defined and highest
prioritized requirements are comprised on early increments.
This helps the development team to monitor the outcome of the
early product. It also allows getting feedback from the system
user. More attention and resources are needed to manage the
project. The designing issue may occur as all requirements may
not analyze earlier.

Fig. 2. Iterative and Incremental Development Model [16]

C. Spiral Development Model

 The spiral model is same as the incremental model, but
concerns about the risk of the project. Many software
development companies are adapting it. It accommodates
changes on requirements early as users are involved early in
the process. This model visualizes the system or product early
[17]. The management of the process is complex like the
iterative model as spiral may go an indefinite period and not
suitable for small projects.

D. Prototype Model

 The prototype model is mostly suitable when the
requirements are not clear utterly. This model aids as a

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 77

Fig. 3. Spiral Development Model [18]

mechanism for recognizing software requirements. It needs
user involvement in the early phases more to say before the
development phase. It facilitates the modeling of the
functionalities of a software in a way that it may not comprise
the particular logics of the of the desired software [19]. This
model provides well understanding and feedback from the
users. This model suffers from insufficient requirement
analysis. So, customers may get confused among prototypes
and the actual system.

Fig. 4. Prototype Model [20]

E. V-Shaped Model

 The V-Shaped life cycle is a sequential processes model
like waterfall. Each phase must be completed before initiation
of the next phase alike waterfall, but testing is emphasized in
this model more than the waterfall model. Before any coding
implementation is done, the testing measures are established
early in the life cycle during each of the phases. Requirements
initiate the life cycle as the waterfall model. A product test plan
is established before development has started. The test plan is
based on the specified functionalities in requirements
collection. The high-level design phase is based on system des-

Fig. 5. V- Shaped Model [21]

Ign. The high-level design phase is based on system design.
For testing the parts of the products to identify the stability to
work together, an integration test plan is fashioned in this
stage. The low-level design phase is based on actual software
components design. Unit tests are established in this stage.
Then all coding is started. After completing the coding,
execution path is continued through the right side of the V
where the earlier developed test plans are placed to testing [4].

F. Rapid Application Development Model

 Rapid Application Development (RAD) model contains the
characteristics of iterative development and prototyping model.
Functional modules are developed simultaneously as
prototypes [22]. These modules are then combined to ample the
software. It accommodates the change in requirements. It also
tracks and reduces process development time with less people
and upsurge the reusability of prototypes. Highly skilled
personnel are necessary to analyze the business requirements
and development of software. It also demands client
involvement throughout the different stages of the model.

Fig. 6. Rapid Application Development [23]

III. AGILE MODEL

 Agile models are the subgroup of evolutionary models
which come with the concept of agility in software engineering
[24]. In agile model, the key characteristic is the length of the
each iteration. The length of each iteration is two weeks to one
month. Each iteration comes up with the outcome of a small

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 78

version release of the product. Each release is based on
functionalities of earlier build versions. Agile models are
people-oriented software development life cycle models rather
unlike plan driven models. The agile model facilitates with the
increased involvement of customers and adapts flexible change
in product requirements [25]. Different variations of agile
SDLC were being proposed by practitioners and researchers
[1]. Basic characteristics of several popular agile models are
described below based on their use in industries:

A. Scrum

 Scrum is widely used agile SDLC model in software
industries. Here the life cycle is divided into three main stages:
Pre-game, Game/Development, Post-game. The small working
team is one of the principles of scrum methodology. Scrum
adapts technical and business challenges to provide best
products [26]. Scrum consists of sprints which are the iterations
from one week to four weeks in length. In scrum, the process is
well inspected, changes are adapted, tested as well as
documented. Scrum prefer less team members with expertise in
agile development. Here requirement selection is prioritized to
aid the business value to the clients where well adaption of any
addition of requirements which known as a product backlog.
Scrum methodology needs team members to be working in
same geological location because scrum meetings are needed
every day where last identified obstacles, solutions, current
product state and future state is discussed. At the end of each
sprint, a small version or demo has been released to come up
the validation from clients.

Fig. 7. Scrum Model [27]

B. Dynamic System Development Method

Dynamic system development model delivers the systems
which encounter tight time by means of incremental
prototyping in a meticulous environment [29]. Increments carry
adequate functionalities to go forward to the next increment. In
this method, practitioners use time boxes to set time and
resources which provide the knowledge of the functionalities to
be delivered in an increment. DSDM needs active user
involvement and the team has given to decide of changes.
Changes on requirements are baselined at a welcome meeting.
Testing and integration are going on throughout the life cycle.

Fig. 8. Dynamic System Development method [28]

C. Extreme Programming

Fig. 9. Extreme Programming [30]

 Extreme programming (XP) is established based on object
oriented programming. Here focus is on the risks in software
development [31]. In planning phase, user stories are created
by customer’s value. CRC cards and prototypes are the
important part of the designing phase in XP. Here pair
programming is an important fact for prioritizing the fast
development of software. Unit tests are established before
initiation of code development and encourage automated
testing environment and validation of testing on daily basis.
The XP SDLC improves the development in following
essential ways: communication, simplicity, daily feedback,

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 79

respect, courage. XP is suitable for small teams to deal with.
XP provides small and frequent version releases. XP provides
easy manage through informal methods.

D. Feature Driven Model

 Feature Driven Model (FDD) provides the practical object
oriented development environment [32]. Using FDD a client-
valued feature can be developed in two weeks or less than two
weeks. FDD scale down any large product. As it is a feature
based model, so for releasing the project features need to
defined on early stage and a feature list is prioritized. It needs
strong collaborations among team members. Features need to
enough size to develop within a short time. FDD is divided into
five phases: Developing of an overall model, features list
establishing, planning by analyzing the feature, designing by
feature and build by feature. FDD is mostly appropriate to
develop big products with less consideration to the initial
design.

Fig. 10. Feature Driven Model

E. Crystal

Crystal SDLC sets maneuverability for limited resource
projects of invention and communication. It has the main goal
to bring useful software and a secondary goal is to set up the
projects for its next phase. It provides always face-to-face
communication with collaborators. For big systems, the teams
become larger and the process becomes heavier. It has the
principles of skilled, disciplined and understandable encounter
of process and documentation. Those team members who are
not working on critical phase, may put effort on their extra time
for refining the product or helping people who are on the
critical phase. Incremental development strategy also used here
but the length varied from 1 to 3 months. Currently, this new
model has three methodologies: Clear (projects with low
critical state), Orange (Moderate critical project), Orange Web
(Critical application of e-business).

IV. COMPARATIVE ANALYSIS

Currently, software industries follow two basic type of
software development process models: Plan driven models,
Agile Models. Software industries select their development
approach based on their product requirements, personnel, team
skills, problem complexities, organizational needs,
organization size, organizations geolocations etc. In the,
following subsections, some basic criteria regarding the
selection of SDLC model has been discussed:

A. Product Size

The product itself the crucial factor regarding the selection
of any SDLC models. Large systems like driver module for
space vehicles, aircraft autopilot system, space telescope
modules, brain interfacing application etc. needs to be planned
and designed with great effort. More scrutinized project
planning is required to make such a big system successful.
After launching that system software, it will be very costly to
change any requirements. So, for large systems plan driven
SDLC models like waterfall [11] are used as next stages cannot
be started without appropriate results on previous stages. For
small systems like e-commerce, classifieds, management
systems, driver tools for personal computers developed
following agile methodologies as change is inevitable as the
update is a continues process in these contexts.

B. Critical Fact

 Software process models are also selected by analyzing
critical facts of any systems. Critical systems like plain cockpit
module systems are hihgly critical system. Any changes on that
system will raise the effort to cope up with the updated system
as aeroplane itself is a critical system. So, plan driven systems
like waterfall can be effective for these systems. Less critical
systems like music player can be updated any time it’s failure
won’t cost hundreds of lives. So, for these types of system
development, FDD will be the best selection.

C. Development Environment

The environment of the development is a crucial parameter
for software development. As we know, agile models succeed
by chaos and merging teams together. So, the members in the
development team as well as the customers have the freedom to
change the requirements. As fast communication is necessary,
team members should be in the same location. On the other
hand, plan driven models succeed by following stable
environment and proper, but the team can collaborate from
different geo locations.

D. Customer Interactions

Agile provides flexibility. So, agile models welcome
changes on requirements in the development phase or any
iterations. On the other hand, plan driven models welcome
client involvement on requirement analysis and product
delivery.

E. Member Experiences

Agile methodologies for software development need expert
agile personnel to come up with the success. For plan driven
models, experience and less experience both type of members
collaborates to reach the success peak.

From the discussed analysis facts, we understand that
different models are best suited for different aspects. The
length of each iteration is lengthier in some models and shorter
in other models. A specific product is developed on the
dynamic environment in the starting phases of the life cycle of
the product as well as the environment may stable at the future
phases. We have observed that no process model can
accommodate both the stable and dynamic environment. We

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 80

have also found the research gap for a software process model
that can incorporate the human centred design of application
software as use in ubiquitous application development [33].
Usage of plan driven models like Waterfall, Iterative,
Incremental, RAD are suitable for large, critical systems and
stable environment. On the other hand, these models will be
costly for the dynamic development environment, changes and
maintenance of software. Less user involvement also can cause
unsuccessful projects using plan driven models. Agile models
like Scrum, XP, DSDM are the best suited models for small
and medium systems [34], can adapt changes on any iteration,
enable shorter iteration and dynamic environment [6]. But this
type of freedom regarding change adaption sometimes cause a
delay on product deadline. Migration among methodologies
[35] also cost time and money as a team needs to cope up with
the transition. So, a model needs to be proposed to tradeoff
among the suitability of plan driven and agile models.

V. CONCLUSION

Software industries use various software process models for
developing software with the product and organizational
success. A successful development depends on the effective
use of the several life cycle stages. Current life cycle models
are used based on the project size, reusability of the product,
development environment, customer interaction. Plan driven
SDLC models are suitable for critical and large projects and it
needs to be in a stable environment. On the other hand, Agile
models are best fitted on the development of small and less
critical systems and facilitate the dynamic environment. Plan
driven models are going to be costly when a change in product
requirement is inevitable. In contrast, agile models are costly
when a change in requirements is too frequently that cause
wastage of development time. As different strategies or SDLC
are suited for different projects, so adaption of different models
for team members at the transition period costs the time. So,
delay on delivery is a regular issue [37]. In this research paper,
we have discovered and analyzed the facts of SDLC models
with respect to software industries. The analyzed facts prove
that it is obvious to propose a new SDLC model which
tradeoffs among the suitability of plan driven and agile models
to improve the outcomes of both clients and the software
industries.

REFERENCES

[1] M. Islam, D. Karmaker, M. Imran, M. Miah and A. Bhowmik,
"Determining The Best Agile SDLC for Bangladesh’s Software
Industry", Asian Transactions on Computers, vol. 5, no. 2, pp. 8-11,
2015.

[2] J. Highsmith and A. Cockburn, "Agile software development: the
business of innovation", Computer, vol. 34, no. 9, pp. 120-127, 2001.J.
Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68-73.

[3] D. Karolak, Global software development, 1st ed. Los Alamitos, Calif.
[u.a.]: IEEE Computer Soc., 1998.

[4] N. Ruparelia, "Software development lifecycle models", ACM SIGSOFT
Software Engineering Notes, vol. 35, no. 3, p. 8, 2010.

[5] I. Jacobson, G. Booch and J. Rumbaugh, The unified software
development process, 1st ed. Reading, Mass: Addison-Wesley, 1999..

[6] R. Pressman, Software engineering, 1st ed. Boston, Mass.: McGraw-
Hill, 2005.

[7] H. Baumann and A. Tillman, The Hitch Hiker's guide to LCA, 1st ed.
Lund: Studentlitteratur, 2004.

[8] S. Kan, Metrics and models in software quality engineering, 1st ed.
Boston, MA: ProQuest Information and Learning Co., 2003.

[9] S. Heisler, "Project quality and the project manager", International
Journal of Project Management, vol. 8, no. 3, pp. 133-137, 1990.

[10] R. Kraut and L. Streeter, "Coordination in software development",
Communications of the ACM, vol. 38, no. 3, pp. 69-81, 1995.

[11] M. Cotterell and B. Hughes, Software project management, 1st ed.
London: International Thomson Computer Press, 1995.

[12] K. Petersen, C. Wohlin and D. Baca, "The Waterfall Model in Large-
Scale Development", Lecture Notes in Business Information Processing,
pp. 386-400, 2009.

[13] C. Lott, "Breathing new life into the waterfall model", IEEE Software,
vol. 14, no. 5, pp. 103-105, 1997.

[14] "Mapping Documentation Development Life Cycle (DDLC) with SDLC
- Ascezen Consulting", Ascezen Consulting, 2013. [Online]. Available:
http://www.ascezen.com/2013/11/mapping-documentation-
development-life-cycle-ddlc-sdlc/. [Accessed: 18- Jan- 2017]. M.
Young, The Technical Writer’s Handbook. Mill Valley, CA: University
Science, 1989.

[15] C. Larman and V. Basili, "Iterative and incremental developments. a
brief history", Computer, vol. 36, no. 6, pp. 47-56, 2003.

[16] "Iterative and incremental development", En.wikipedia.org, 2017.
[Online]. Available:
https://en.wikipedia.org/wiki/Iterative_and_incremental_development.
[Accessed: 18- Jan- 2017].

[17] B. Boehm, "A spiral model of software development and enhancement",
Computer, vol. 21, no. 5, pp. 61-72, 1988.

[18] B. Thompson, "Boehm’s Spiral Revisited | Lean Software Engineering",
Leansoftwareengineering.com, 2008. [Online]. Available:
http://leansoftwareengineering.com/2008/05/05/boehms-spiral-
revisited/. [Accessed: 18- Jan- 2017].

[19] J. Arnowitz, M. Arent and N. Berger, Effective prototyping for software
makers, 1st ed. Amsterdam: Elsevier, 2007.

[20] S. Khan and H. Jamal, "Advantages of Using prototype software
development model instead of waterfall model? - Engineering Questions
Answers QnA - Agricultural, Electrical, Civil, Computer, Mechanical",
Enggpedia.com, 2014. [Online]. Available:
http://www.enggpedia.com/answers/2057/advantages-prototype-
software-development-instead-waterfall. [Accessed: 18- Jan- 2017].

[21] D. FIRESMITH, "Using V Models for Testing", SEI Blog, 2013.
[Online]. Available: https://insights.sei.cmu.edu/sei_blog/2013/11/using-
v-models-for-testing.html. [Accessed: 18- Jan- 2017].

[22] P. Beynon-Davies, C. Carne, H. Mackay and D. Tudhope, "Rapid
application development (RAD): an empirical review", European
Journal of Information Systems, vol. 8, no. 3, pp. 211-223, 1999.

[23] "Rapid Application Development", Essential Software & Design, 2017.
[Online]. Available: http://www.esnd.com/build/rapid-application-
development. [Accessed: 18- Jan- 2017].

[24] R. Martin, Agile software development, 1st ed. Upper Saddle River, N.J.:
Prentice Hall, 2003.

[25] S. Augustine, B. Payne, F. Sencindiver and S. Woodcock, "Agile project
management", Communications of the ACM, vol. 48, no. 12, pp. 85-89,
2005.

[26] K. Schwaber and M. Beedle, Agile software development with Scrum,
1st ed. Upper Saddle River, NJ: Prentice Hall, 2002.

[27] "Project Methodology - English", Cubeserv.com, 2014. [Online].
Available: http://www.cubeserv.com/project-methodology-en.html.
[Accessed: 19- Jan- 2017].

[28] "Top 12 Software Development Methodologies & its Advantages /
Disadvantages | TatvaSoft", Tatvasoft.com, 2015. [Online]. Available:
http://www.tatvasoft.com/blog/top-12-software-development-
methodologies-and-its-advantages-disadvantages/. [Accessed: 19- Jan-
2017].

[29] J. Stapleton, DSDM, dynamic systems development method, 1st ed.
Harlow, England: Addison-Wesley, 1997.

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 81

[30] W. Hutagalung, "Extreme Programming", Umsl.edu, 2006. [Online].
Available:

[31] K. Beck, Extreme programming eXplained, 1st ed. Reading, MA:
Addison-Wesley, 2000.

[32] S. Palmer and J. Felsing, A practical guide to feature-driven
development, 1st ed. Upper Saddle River, NJ: Prentice Hall PTR, 2002.

[33] A. Sutcliffe, "Integrating Human Computer Interaction with Jackson
System Development", The Computer Journal, vol. 34, no. 2, pp. 132-
142, 1991.

[34] P. Kruchten, "Contextualizing agile software development", Journal of
Software: Evolution and Process, vol. 25, no. 4, pp. 351-361, 2011.

[35] S. Nerur, R. Mahapatra and G. Mangalaraj, "Challenges of migrating to
agile methodologies", Communications of the ACM, vol. 48, no. 5, pp.
72-78, 2005.

[36] M. Rahim, M. Hasan, A. Chowdhury and S. Das, "Software Engineering
Practices and Challenges in Bangladesh: A Preliminary Survey".

[37] M. Rahim, A. Chowdhury, D. Nandi and M. Rahman. "Issue Starvation
in Software Development: A Case Study on Redmine Dataset".

AZM Ehtesham Chowdhury completed

B.Sc. in Computer Science & Engineering
and M.Sc. in Computer Science from

American International University-

Bangladesh, Dhaka, Bangladesh. His
current research interest includes Data

Science, Data Mining, Software

Engineering, Intelligent Systems. Computer
Vision, Pattern Recognition and Human
Computer Interaction.

Abhijit Bhowmik completed his B.Sc. in
Computer Science & Engineering and M.Sc.

in Computer Science from the American

International University– Bangladesh
(AIUB). Currently he is working as a Senior

Assistant Professor and Special Assistant,

Office of Student Affairs (OSA) in the
Department of Computer Science, AIUB.

His research interests include wireless

sensor networks, video on demand, software
engineering, mobile & multimedia
communication and data mining.

Md Hasibul Hasan obtained his B.Sc. in
Computer Science & Software Engineering

and M.Sc. in Computer Science from

American International University-
Bangladesh, Dhaka, Bangladesh. His

current research interest includes Data
Mining and Software Engineering.

Md Shamsur Rahim obtained his B.Sc. in

Computer Science & Software Engineering

and M.Sc. in Computer Science from
American International University-

Bangladesh, Dhaka, Bangladesh. His

current research interest includes Data
Science, Data Mining and Software
Engineering.

AJSE Vol:16, Issue:2, pp 75 – 82 © AJSE P a g e | 82

