
Abstract—This paper introduces an innovative approach 
utilizing the INA219 sensor and ESP8266 for an efficient power 
monitoring system, complemented by straightforward 
calibration and validation techniques. Real-time data is 
seamlessly stored and displayed in Google Sheets through Blynk 
apps. The system undergoes calibration using fixed DC lamps 
and resistors as voltage loads, with digital multimeters, 
oscilloscopes, and power data loggers employed for comparative 
analysis. Calibration employs the linear regression technique, 
and accuracy, precision, and uncertainty analyses are 
determined through Mean Absolute Percent Error (MAPE), 
Relative Standard Deviation (RSD), and Gaussian distribution. 
Notably, the load voltage and shunt voltage sensor coefficients 
of determination (R2) stand at 0.999 and 0.997, with 
corresponding accuracy rates of 99.27% and 93.71%, precision 
levels of 99.82% and 99.55%, and uncertainties of 0.37 V and 
0.89 mV. The research reveals a noteworthy finding: for 
achieving accurate current measurements when employing an 
external shunt resistor smaller than the INA219's internal shunt 
resistor, calculating the current using Ohm's law, proves more 
accurate than direct measurement.  

Index Terms—Arduino, Calibration, INA219, Power Logger, 
Internet of Things. 

I. INTRODUCTION

LECTRICAL energy is indispensable for all communities,
necessitating a reliable energy supply to support
sustainable economic growth. The escalating demands, 

attributed to population growth and economic expansion, 
have led to a 2.7% increase in electrical energy consumption 
in numerous countries, particularly in developing nations [1]–
[3] including for heating and cooling [4]. Utilizing smart
meter may help this situation better in terms of efficiency due
to its accuracy.

Energy meters typically possess permanent installation 
characteristics and are limited to close-range monitoring [5, 
6]. Although ZigBee, GSM, and RFID modules have been 
developed for electricity meters [7], their maintenance costs 
are substantial [7, 8]. The Internet of Things (IoT) emerges as 

a promising solution, offering more effective and real-time 
data transmission and communication capabilities, even 
across long distances [9, 10]. Wireless Fidelity (Wi-Fi) and 
mobile phone-based data transmission demonstrate potential 
reductions in daily and weekly electricity consumption by 
15.88% and 6.43%, respectively [12].  

ESP8266 has advantages over Bluetooth and ZigBee [13]–
[15] since wireless data transmission is of higher quality than
with Bluetooth and ZigBee modules. Thus, ESP32 and
ESP8266 is increasingly used gaining prominence in
optimizing IoT systems [13]–[16]. ESP8266, an affordable
Wi-Fi technology, governs sensors in IoT automation, with
each sensor connecting to the ESP8266 board through
General-Purpose Input/Output (GPIO) pins [17], [18].
Rizkyanto et al. [19] used INA219 sensor for a wireless-based
power monitoring system for controlling used electrical loads
as a load power controller. However, limitations exist in data
storage due to the SD Card's capacity.

Thus, IoT facilitates collaboration between major 
companies such as Amazon, IBM, and Microsoft, utilizing 
cloud data management and Google's cloud storage. Google 
Sheets, provides real-time access and modification of Google 
Apps Scripts (GAS), demonstrating shorter database 
connection and data retrieval times compared to MySQL 
[21]. GAS governs the direction of Hypertext Transfer 
Protocol (HTTP) data communication, integrating with the 
Application Programming Interface (API) connected to the 
HTTP communication protocol in GAS [22]–[24]. 

 Based on a potential analysis, diverse voltage and current 
measurements have been implemented in an electric power 
monitoring system [13], [25]. The datasheet  [26] reveals that 
the sensor has the potential to serve as a reliable DC power 
meter component, with a maximum error rate of 0.5%. The 
INA219, as described in the datasheet, is capable of 
measuring voltage drops across a shunt resistor in circuits 
where the voltage does not exceed 26 V. Additionally, the 
INA219 can simultaneously measure currents up to 3.2A and 
integrate with other IoT devices for a low-cost smart home 
system [27]. Furthermore, Murti et al. [20] developed a 
measuring instrument using sensor types CR5310-300 and 
WCS1800, achieving calibration accuracy rates of 99.99% 
for voltage and 99.98% for current. Notably, the datasheet 
lacks details on a calibration system. Whereas, calibration is 
imperative for all electricity-monitoring instruments to 
prevent measurement deviations, encompassing both DC and 
AC measuring instruments. Hence, calibration being 
fundamental to measurement management, ensures the 
accuracy, reliability, and traceability of measurement tools.  

Consequently, this research contributes to develop and 
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propose a simple calibration method for a power monitor. 
This involves simultaneous real-time measurement of current 
and voltage in a single component connected to the Blynk and 
Google Sheets platforms via IoT. The developed system 
undergoes calibration and validation to assess its feasibility 
for mass deployment. 

II. MATERIALS AND METHOD

A. Research Design

The power monitoring system is designed to operate in
real-time utilizing various hardware components as detailed 
in Error! Reference source not found., Error! Reference 
source not found., and TABLE III. Error! Reference 
source not found. shows a flowchart algorithm illustrates the 
interplay between the software and hardware employed in the 
power monitoring system. The INA219 sensor serves as the 
primary component in this system, responsible for measuring 
bus voltage (BV), load voltage (LV), shunt voltage (SV), 
current (I), and DC power (P). The measurement results are 
displayed on the Arduino IDE application's serial monitor. 
Subsequently, the results for each type undergo calibration 
and validation processes. Following this, the data is 
transmitted to the Blynk and Google Sheets platforms, 
establishing connections through the GAS and Arduino 
programming.  

TABLE I 
MAIN COMPONENTS 

No. Materials Qty. 
1. Sensor INA219 1 
2. NodeMCU ESP8266 V3 1 

TABLE II 
STATIC LOAD 

No. Materials Qty. Measurement 
1. Resistor 4.7KΩ 1 Vrms calibration 2. Green LED 3V 1 
3. Shunt resistor 0.01Ω 1 Vdrop calibration 4. LED 12V 25W 1 
5. DC lamp 9W 12V 3 Maximum voltage 
6. DC Pump 12V 5A 1 Inductive load 

TABLE III 
STANDARDISED REFERENCE INSTRUMENTS 

No. Materials Qty. 
1. Hantek 365D Bluetooth/USB Data Logger 1 
2. SANWA Digital Multimeter CD800a 1 
3. GWInstek GDS-1120B Oscilloscope 1 
4. DC Power Supply MDB-3010EC 1 

B. Hardware Design

The INA219 sensor is linked to the NodeMCU ESP8266,
receiving a positive input from the power supply (Vin+) and 
a negative input from the load (Vin-) as seen in Fig. 2. The 
input from the power supply (V1) can be adjusted based on 
the load requirements for accurate measurements. The 
INA219 generates a voltage drop across the input Vin+ and 
Vin-, directing it to the internal shunt resistor. 
Simultaneously, the voltage Vin- connected to GND serves 
as a parameter determining the magnitude of the bus voltage 
value. Both Vin+ and Vin- represent analog voltages from the 
load, requiring conversion to digital using the internal ADC 
of the INA219 sensor. Additionally, proper connection of all 
ground pins, is essential to prevent measurement errors. 

Fig. 1. The algorithm flowchart of power monitoring system 

That configuration allows the NodeMCU to receive, 
process, store, and transmit the measurement data of a load's 
power consumption via Wi-Fi to various platforms and data 
storage. The NodeMCU adhering to the 802.11 b/g/n antenna 
protocol, operating on the ISM 2.4GHz frequency, with an 
operating current of 80mA, operating voltage range of 2.5-
3.6V, a CPU type Tensilica L106 32-bit processor, and PA + 
25dBm. 

Fig. 2. Schematic circuit of Power Monitoring System 

C. Software Design

The NodeMCU, ensures consistent real-time data views
across both Blynk and Google Sheets, displaying 
measurement results (bus voltage, shunt voltage, load 
voltage, current, and power) along with corresponding 
delivery times. 
1) Blynk IoT platform

Blynk version 1.0.1 facilitates the connection of User
Interface (UI) designs for both mobile application and 
website. This is achieved by modifying data-sending 
commands from NodeMCU, activated with TemplateID and 
AuthToken 
2) Google sheets

Google Sheets serves as a real-time data storage platform.
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Apps Script facilitates NodeMCU interaction with Google 
Sheets cells, rows, and columns, ensuring accurate input of 
measured values. Apps Script requires code sequences 
including SheetID, Sheet Name, developer-localized time, 
and measurement type. The software developed generates a 
Deployment ID and URL, which can be input into the 
Arduino IDE program, enabling real-time integration with 
Blynk and other hardware. 
 

D. Calibration 

These investigations involve the calibration of load voltage 
RMS (Vrms) and voltage drop (Vdrop) measurements. Fig. 3 
illustrates calibration with the Power Monitoring System, 
Fig. 4 demonstrates calibration with a multimeter, and Fig. 5 
depicts calibration with a data logger. 

 

 
Fig. 3. Calibration with Power Monitoring System 

 

 
Fig. 4. Calibration with Multimeter and Oscilloscope 

 

 
Fig. 5. Calibration with Data Logger 

 
Fig. 2 also illustrates the schematic wiring for the Vrms 

calibration circuit, and Fig. 6 depicts the schematic wiring for 
the Vdrop calibration circuit. Vrms was calibrated using a 1V 
to 15V input range with a 4.7KΩ resistor and a 3V LED load. 
For Vdrop calibration, a 7.7V to 9.1V input range was 
employed with a 0.01Ω shunt resistor and a 12V LED as the 
load. The input voltage range for Vdrop calibration was set 
between 7.7V and 9.1V. Both Vrms calibration and Vdrop 
calibration utilize specific measuring tools—an oscilloscope 
for Vrms and a Hantek data logger for Vdrop. Fifteen sets of 
calibration data are collected for each input voltage. 

 
Fig. 6.  Schematic wiring of Vdrop calibration. 

 

E. Data Validity 

Standardized measuring instruments, such as a data logger, 
multimeter, and oscilloscope, were utilized to validate the 
latest values obtained from this calibration. The validation 
process included the analysis of error, precision, accuracy, 
and uncertainty. 
 

F. Mean Absolute Percentage Error (MAPE) 

MAPE (Mean Absolute Percentage Error) is a method for 
calculating absolute error, offering an accurate measurement 
independent of the variable's size or the scale of the predicted 
demand. This characteristic makes it simple to interpret and 
consistently applicable across different scales. MAPE 
generates an error value by comparing the expected value (F) 
to the observed or actual value (A). The greater the MAPE 
value, the lower the accuracy of the measuring device in 
producing a quantitative reading [28]. 
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MAPE is expressed as a single-valued error follows 
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     (1) [29]–[32]. 
Additionally, MAPE is only applicable when the actual value 
is not zero; it yields an infinite value when the actual value is 
zero [24]. The accuracy value is determined by the MAPE 
percentage follows MAPEaccuracy −= %100      
 (2) [26, 27], and  

TABLE IV classifies MAPE accordingly.  
 

TABLE IV 
MAPE CLASSIFICATION [35] 

Indicator Classification 

%10MAPE  High  

%20%10  MAPE  Good  

%50%20  MAPE  Reasonable  

%50MAPE  Inaccurate  
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G. Precision 

A precision analysis was conducted to assess the closeness 
of data obtained from repeated measurements under 
consistent conditions [34]. Standard Deviation (SD) and 
Relative Standard Deviation (RSD) were utilized to evaluate 
the accuracy of a measuring instrument. SD is commonly 
employed to identify patterns of distribution and variability. 
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Equation 
%100=

x
RSD



          (5) is 
the mathematical equation of RSD, hence, Precision is 
obtained by using RSDprecision −= %100      
 (6). 
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H. Uncertainty 

Uncertainty is determined through the Gaussian 
distribution method by calculating the mean and standard 

deviation expressed through 
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xU  is uncertainty, 
N  is SD of a 

certain number of N measurements, and 
NX  is the average of 

some N measurements. 
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III. RESULT AND DISCUSSIONS 

A. Power Monitoring System Design 

The Power Monitoring System was constructed utilizing 
the NodeMCU to optimize IoT-based communication 
systems. IoT functionality was implemented through the 
Blynk mobile apps (Fig. 7) and website platform (Fig. 8). 
Information received by Blynk was influenced by 
adjustments in firmware configuration, AuthTokens, the 
implementation of libraries, and sequences of commands in 
code form. Furthermore, the layout patterns of widgets enable 
flexible monitoring over extended distances, contingent on 
the availability of an internet connection. 

 The C++ programming code on the Arduino IDE was 
employed for measuring bus voltage, load voltage, shunt 
voltage, current, and power values from the INA219 sensor. 
This code structure also serves as a command to send real-
time data to Blynk and store it in Google Sheets.  

Based on the compiled code structure, the delay in 
displaying measured data on the Arduino IDE and Blynk 
serial monitors was set to 10 seconds. Although the display 
time in Google Sheets varied by several milliseconds, this 
discrepancy was attributed to the data loading process. The 
delay between data displays aligns consistently with the 
output values on the serial monitor. Due to the system's 
rounding of numbers, there is a slight variation between the 
display on Blynk and the serial monitor. 

The Apps Script program in the Google Sheets extension 
plays a crucial role in influencing the data transmission 
procedure from the ESP8266. This program has been 
modified to accommodate the measurement type displayed on 
the Google Sheets page. Additionally, the time and date are 
adjusted based on the time zone where the data is collected or 
monitored.  

 
Fig. 7. Power monitoring system in Blynk mobile apps 

 

 
Fig. 8.Power monitoring system in Blynk website 

B. Calibration 

1) Voltage 

Calibration was performed on the load voltage, given its 
direct relationship with the load. The results of the initial 
voltage measurement before calibration are presented in  
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TABLE V. VM, Vosc, VI, and VD respectively are voltage 
measured using multimeter, oscilloscope, INA219, and 
Hantek data logger. 

  
TABLE V 

VOLTAGE MEASUREMENT RESULTS BEFORE CALIBRATION 
Input (V) VM (V) Vosc (V) VI (V) VD(V) 

1 0.999 0.976 0.985 1.006 
2 1.990 1.989 1.983 2.017 
3 3.000 2.969 2.979 3.031 
4 3.996 3.975 3.995 4.038 
5 4.988 4.989 4.871 5.049 
6 5.999 6.000 5.968 6.042 
7 7.001 7.013 6.980 7.053 
8 7.991 8.038 7.983 8.060 
9 8.998 9.060 8.985 9.060 

10 9.981 10.000 10.010 10.071 
11 10.984 11.000 10.999 11.070 
12 12.000 11.900 12.000 12.038 
13 12.998 13.000 13.003 13.082 
14 14.000 14.100 13.990 14.095 
15 15.000 15.000 14.979 15.111 

 
 
Data in  
TABLE V were plotted as graphs as shown in Fig. 9 and 

generates linear equations for the INA219 sensor, multimeter, 
and data logger which is shown in  

0311.00003.1 −= xy I       (8), 
0164.09973.0 −= xyM      (9), and 
031.00029.1 −= xyD       (10). 

 

 
Fig. 9. Before calibrated load voltage graph 

 
0311.00003.1 −= xy I

     

 (8)  
0164.09973.0 −= xyM

     (9) 
031.00029.1 −= xyD

      (10) 
 
The three linear equations facilitating calibration through a 

simple linear calibration technique. In this method, the initial 
voltage measurement results were substituted to its linear 
equation as the value of the x variable and replotted as a new 
graph, as shown in Fig. 10, resulting in voltage calibration 
determination coefficient of 0.9999 and better intercept. It is 
evident that both the multimeter and data logger obtained the 
same coefficient of determination as the INA219 sensor. 
These coefficients of determination indicate high quality, 
given their proximity to one [39]. Afterwards, the system can 
be used for load voltage measurement by utilizing the 
equation to produce final measurement. 

 

 
Fig. 10. Calibrated load voltage graph 

 
To assess the built system's voltage measurement 

capability, deeper tests were conducted using DC lamps as 
the load. The input voltage was varied from 22V to 32V in 
one-volt increments. Despite the INA219 sensor's specified 
maximum limit for measuring Vrms being 26V according to 
the datasheet, the system demonstrated the ability to measure 
voltages up to 32V, as depicted in the positive linear graph in 
Fig. 11. 

Furthermore, to assess the impact of calibration, Fig. 12 
illustrates the measuring current resulting from voltage 
calibration. It is evident that the current calculated from the 
calibrated voltage using Ohm's Law exhibits a consistent 
trendline for all meters, with a determination coefficient of 
0.9998. This indicates that the system has been successfully 
calibrated and ready for the next field test.  

 

 
Fig. 11. Vrms measurement. 

 

 
Fig. 12. Current calculation based on calibrated voltage 

 
2) Voltage Drop (Vdrop) 

The INA219 sensor also generates a shunt voltage 
parameter known as voltage drop. Vdrop calibration is 
employed to derive the current value using Ohm's Law. The 
voltage drop value is directly proportional to the current value 
detected by the INA219 sensor in the constructed system. The 
Vdrop of this system was calibrated using a reference 
measuring instrument, namely the Hantek 365D Data Logger 
(VdD). The calibration results (VdI) were then compared with 
the voltage drop measurements obtained from the Multimeter 
(VdM), as shown in TABLE VII. 

 
TABLE VI 
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THE INITIAL VOLTAGE DROP MEASUREMENT BEFORE CALIBRATION 
Input (V) VdM (mV) VdD (mV) VdI (mV) 

7.7 0.107 0.133 2.019 
7.8 0.300 0.273 3.535 
7.9 0.447 0.453 5.341 
8.0 0.653 0.653 6.365 
8.1 0.907 0.900 7.929 
8.2 1.120 1.080 11.647 
8.3 1.393 1.367 13.828 
8.4 1.673 1.673 16.389 
8.5 1.940 1.927 18.961 
8.6 2.260 2.200 22.886 
8.7 2.527 2.487 25.202 
8.8 2.893 2.800 28.183 
8.9 3.167 3.100 30.663 
9.0 3.413 3.373 33.533 
9.1 3.693 3.600 36.715 

 
 
TABLE VI shows the initial voltage drop measurement 

before calibration. The data were plotted into Fig. 13 
produces an INA219’s linear equation of 

3362.09213.0 −= xyI
. It can be seen from Fig. 13 that 

before calibration, the multimeter and data logger 
measurement exhibited a significant divergence in trend. 
Thus, for every built system, calibration is supercritical to be 
conducted. 

 
Fig. 13. Before calibration voltage drop graph. 

Likewise explained voltage calibration, substituting the old 
IdI value into the x in the yI linear regression obtained, as 
depicted in Fig. 14, aligns the constructed system well with 
both the multimeter and the data logger. The R2 for INA219, 
multimeter, and Data Logger is close to one, signifying that 
the built system is now more valid for Vdrop measurements. 

 

 
Fig. 14. Calibrated voltage drop graph 

 
However, when it is used to measure current after the 

calibration, using a 0.01Ω resistance, results in an average 
error of 0.1mV in the measured voltage drop. The failure was 
suspected to be due to the INA's shunt (0.1Ω) being larger 
than the used shunt resistor, causing measurement errors. To 
address this issue, the current to be measured can be 
calculated using Ohm's law from the measured Vdrop, as 
detailed in TABLE VII. IIcal, ID, and IM represent the current 
measured with the calibrated INA219, data logger, and 
multimeter, respectively. As the results, the voltage drop 
calibration produced identical measurement results to those 
obtained from other meters as shown in Fig. 15. 

TABLE VII 

CALCULATION CURRENT FROM VOLTAGE DROP 
Input (V) II cal (mA) ID (mA) IM (mA) 

7.7 17.364 13.333 10.667 
7.8 32.600 27.333 30.000 
7.9 50.744 45.333 44.667 
8.0 61.042 65.333 65.333 
8.1 76.753 90.000 90.667 
8.2 114.119 108.000 112.000 
8.3 136.041 136.667 139.333 
8.4 161.783 167.333 167.333 
8.5 187.625 192.667 194.000 
8.6 227.074 220.000 226.000 
8.7 250.350 248.667 252.667 
8.8 280.313 280.000 289.333 
8.9 305.237 310.000 316.667 
9.0 334.073 337.333 341.333 
9.1 366.052 360.000 369.333 

 

 
Fig. 15. Current resulted from calibrated voltage drop 

 

C. Validation 

This stage focused on evaluating the accuracy, precision, 
and uncertainty of the built system's measurements in 
comparison to other meters. 
1) Accuracy 

The MAPE method was employed to assess the proximity 
of INA219 measurement results after calibration with the 
multimeter, INA219 sensor, data logger, and oscilloscope. 
Error and accuracy measurements were utilized to calculate 
the results, as illustrated in TABLE VIII. The calculations 
reveal that the multimeter exhibits the highest accuracy for 
measuring both voltage and voltage drop. Furthermore, the 
INA219 is more accurate than the Data Logger in measuring 
load voltage. 

TABLE VIII 
VOLTAGE MEASUREMENT MAPE AND ACCURACY 

Type Voltage Voltage Drop 
Benchmark Oscilloscope Data Logger 

Analysis MAPE 
(%) 

Accuracy 
(%) 

MAPE 
(%) 

Accuracy 
(%) 

Multimeter 0.68 99.32 3.70 96.29 
INA219 0.73 99.27 6.29 93.71 

Data Logger 1.90 98.09 - - 

 
2) Precision 

From TABLE IX, the highest precision in voltage 
measurement is observed with the Hantek data logger, 
achieving 99.93%. Conversely, the INA219 system exhibits 
the lowest precision for voltage measurement. On the other 
hand, when it comes to Vdrop, the INA219 proves to be the 
most precise instrument. Notably, the oscilloscope couldn't 
detect the Vdrop due to the small size of the used shunt 
resistor (0.01Ω). 

 
TABLE IX 

VOLTAGE AND VOLTAGE DROP PRECISION 
Measurement Type Voltage Voltage Drop 

Benchmark Oscilloscope (%) Data Logger (%) 

Precision Oscilloscope - - 
Multimeter 99.89 94.23 
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INA219 99.82 99.55 
Data Logger 99.93 - 

3) Uncertainty

In terms of uncertainty measurement, TABLE X
demonstrates that the INA219 sensor has the lowest voltage 
uncertainty compared to others. However, for Vdrop 
measurement, the built system achieved the smallest.  

TABLE X 
VOLTAGE AND VOLTAGE DROP MEASUREMENTS UNCERTAINTY 

Measurement Type Voltage (V) Voltage Drop (mV) 
Benchmark Oscilloscope Data Logger 

Uncertainty 
(±) 

Oscilloscope 0.30 39.22 
Multimeter 0.22 11.55 

INA219 0.37 0.89 
Data Logger 0.15 12.17 

D. Load Testing

Calibration and validation tests were carried out on the
Power Monitoring System using resistive loads, confirming 
the sensor's capability to measure such loads. Furthermore, 
inductive load testing was conducted using a pump as the 
load. As the result illustrated in TABLE XI, Vrms maintained 
an almost constant value under test circuit conditions with a 
consistent input voltage and varying input current. The 
graphic representation of the results in Fig. 16 indicates that 
the INA219 sensor remains unaffected by loads type. 

TABLE XI 
VRMS MEASUREMENT WITH INDUCTIVE LOAD 

Input (A) VI cal (V) VD (V) IM (V) 
0.50 11.967 12.136 11.964 
1.00 11.966 12.136 11.964 
1.50 11.966 12.136 11.964 
2.00 11.965 12.136 11.964 
2.50 11.966 12.136 11.964 
3.00 11.965 12.136 11.964 

Fig. 16.  Inductive load testing 

IV. CONCLUSION

This research aims to develop a power monitoring and 
logging system, showcasing a straightforward calibration and 
validation technique to ensure accurate measurement results. 
The built system utilizes the INA219 sensor for detecting DC 
power, with data collected and visualized in real-time using 
Google Sheets and Blynk. Calibrations were achieved 
through a simple linear regression technique on load and 
shunt voltage, resulting in determination coefficients (R2) of 
0.999 for load voltage and 0.997 for shunt voltage drop, 
indicating successful calibration. Accuracy tests yielded 
99.27% for load voltage and 93.71% for shunt voltage drop. 
In terms of precision, the sensor demonstrated high precision 

with 99.82% for measuring voltage and 99.55% for 
measuring voltage drop, accompanied by uncertainties of 
0.37 V and 0.89 mV, respectively. Therefore, this power 
monitoring system is deemed feasible as a measuring tool due 
to its high precision and accuracy. For future work, the 
system could be enhanced with a relay for use in appliances 
as a power management system. Additionally, this built 
system can find applications in laboratory work. 
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