
Abstract— Task scheduling determines the order of mapping 
tasks to virtual machines to meet objectives. In this paper, a 
batch mode heuristic method that is centralized, dynamic, and 
multi-objective has been presented for scheduling independent 
tasks with a deadline and belonging to several user levels, using 
the cloud elasticity in the public cloud environment. In this 
method, it has been intended to improve the objectives of 
makespan, deadline violation, total execution cost, and load 
balancing by considering the tasks’ prioritization based on the 
criteria of user level, deadline, task length, and selection of 
heterogeneous virtual machines according to processing power, 
workload and usage cost. The proposed method was simulated 
using the CloudSim tool. Besides, the method’s ability to achieve 
the mentioned goals has been evaluated in comparison with 
similar methods. The evaluation results, established on standard 
test data, show that the proposed method has a good 
performance in improving its objectives. 

Index Terms— Cloud computing, Scheduling the tasks with 
deadline, Multi-criteria prioritization, Elasticity.  

I. INTRODUCTION

LOUD computing is a model for providing easy access
to a set of changeable and configurable computing 

resources (networks, servers, storage space, applications, and 
services) based on user demand over the network. The access 
also can be provided or released quickly with the lowest 
resource management requirements and the service provider’s 
direct intervention [1]. 

 Scheduling tasks in cloud computing means mapping tasks 
to virtual machines in a way that the service requirements’ 
quality requested by cloud customers are met mainly within 
the agreed service level [2, 3]. 

Cloud task scheduling is a challenging and macro issue 
following the main objectives of improving execution and 
service quality, reducing execution cost and response time 
while maintaining task’s performance and integrity. An 
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efficient scheduling algorithm can be created by considering 
existing methods and adding other criteria such as user level to 
it [4]. Furthermore, a scheduling algorithm must take into 
account the interests of the two parties involved in the 
interaction, which are the service provider and the service 
consumer [5-8]. 

Several users with different priority levels may be using the 
cloud service at the same time. Therefore, in addition to the 
common criteria such as length of execution time and 
deadline, users’ priority levels should also be considered as 
one of the criteria in scheduling tasks. The criteria for 
prioritization in the proposed method are the users’ priority 
levels and the tasks’ length and deadline. Besides, the 
selection of virtual machine established on the criteria of 
processing power, workload and usage cost. Hence, it is 
possible to delete or add new criteria as needed. Depending on 
the situation and in accordance with the desired objective, by 
changing the weight of the criteria, the desired result can be 
achieved. This factor distinguishes the proposed method from 
other methods in addition to considering different effective 
criteria. 

The proposed method is a dynamic multi-criteria method 
that can be used in different scenarios by providing the 
possibility of adjusting the effectiveness of these criteria. 
Dynamic prioritization has been also used to prevent tasks 
starvation and to consider their deadline during scheduling. 

II. LITERATURE REVIEW

Various task scheduling methods have been presented based 
on the criteria involved in scheduling and the objectives that 
the scheduler seeks to achieve. For example, energy 
consumption, makespan, load balancing, and resource 
utilization are the main objectives that various scheduling 
algorithms try to improve [9-14]. 

In the max-min algorithm, a task with the longest execution 
time is selected and assigned to the resource that provides the 
shortest completion time for execution. This continues until all 
tasks are scheduled. Although the min-min algorithm 
functions almost similarly to the max-min algorithm, a task 
with the shortest execution time is selected each time in the 
min-min algorithm [15-17]. 

When the number of short tasks in the tasks set is greater 
than the number of longer tasks, the min-min algorithm uses 
fewer resources and does not allow simultaneous execution of 
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tasks. As a result, the makespan will increase. Although the 
max-min algorithm works better than the min-min algorithm 
in this case, if the number of longer tasks is higher, it will 
increase the makespan [18]. The min-min algorithm works in 
favor of short tasks and improves the system throughput. Also, 
starvation occurs for the shorter tasks in the max-min 
algorithm [19]. 

Chaudhary [20] presented the Deadline and Suffrage Aware 
Algorithm. This algorithm is similar to the min-min and max-
min algorithms of a single-criterion method. The tasks’ 
deadline, which is considered in the scheduling instead of the 
execution time, spots the difference here. In this algorithm, if 
the tasks are ranked in an ascending order based on deadline, a 
task with the smallest deadline is mapped to a virtual machine 
providing the least completion time for it. This method has a 
better performance compared to the max-min and min-min 
methods in all the considered goals. 

Wu et al [21] provided a task scheduling algorithm based on 
QoS-driven in cloud computing. This algorithm (TS-QoS) 
prioritizes tasks based on the user privilege, urgency, 
workload (length), and latency time. In the scheduling phase, 
each task is assigned to the virtual machine which provides the 
lowest completion time. This method considers several criteria 
in prioritizing tasks, and the possibility of influencing each 
criterion in determining priority can be adjusted; however, it is 
more complex than single-criterion methods. In addition, it 
often has a weaker performance than the min-min method in 
terms of the makespan of tasks. 

Most scheduling algorithms, including those mentioned 
above, have been developed based on basic algorithms such as 
Min-Min (which was previously used in computing 
environments such as the Grid) and considering more criteria 
for prioritizing tasks. Moreover, in most of these methods, the 
virtual machine is selected based on the criterion of 
completion time for the task with the highest priority. In the 
proposed method, in addition to prioritizing based on multiple 
criteria, we use the elasticity of the cloud environment and 
increase the flexibility of the scheduler by allowing the virtual 
machine to be selected based on several different criteria so 
that it is possible to remove or add different criteria in the 
selection of virtual machines according to the need. 

III. PROPOSED METHOD 
The proposed method is a centralized, dynamic and multi-

objective method that can be used in different scenarios by 
providing the possibility of adjusting the effectiveness of these 
criteria. Dynamic prioritization has been also used to prevent 
tasks starvation and to consider their deadline during 
scheduling. 

In this method, in addition to the independence of tasks, it is 
assumed that tasks with a certain length and deadline are sent 
to the cloud from the users with different priority levels. these 
users are classified based on items such as payments, loyalty, 
etc, and are not fixed. he/she can increase or decrease the 
priority level of executing the tasks by paying higher or lower 
cost. Also, the scheduling platform is public cloud, and all 
tasks are soft real-time type. 

The model shown in Fig. 1 is used to illustrate the proposed 
method. This model has been proposed and developed using 
the concepts of task scheduling in distributed systems as well 
as the concepts and solutions presented in [22-24]. Each cloud 
system consists of a number of data centers, and each data 
center contains several physical hosts. There are also a number 
of virtual machines on each of these hosts. Specifications and 
configurations of different data centers are registered in a 
service called cloud information service. Users from different 
levels interact with different applications, in which a series of 
tasks are created and recorded in the cloud scheduler.  

 

 
Since scheduling operations are performed after the 

accumulation of a number of tasks in the scheduler, based on a 
set of rules and in order to improve several objectives, the 
CM3 method falls into the category of batch mode heuristic 
scheduling methods and includes the following three main 
steps: 
1) Prioritizing tasks 
2) Selection of heterogeneous virtual machines 
3) Mapping tasks to virtual machines using elasticity feature 

A. Definitions 

Some basic concepts and technical terms of the CM3 
method, inspired by the definitions mentioned in [25-27] and 
with changes and developments have been redefined or newly 
defined below according to the objectives of our research. 

Definition 1: The set of tasks 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}, where  𝑡𝑖 
is independent of other tasks and each task is described by a 
quadrant as follows: 

𝑡𝑖 =< 𝐼𝑑𝑖 , 𝐿𝑒𝑛𝑔𝑡ℎ𝑖, 𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 > (1) 

The above characteristics are the unique identification, length, 
user level of the sender user, and the deadline of the task, 
respectively. 

 
Fig. 1. proposed method model 

AJSE Volume 22, Issue 2, Page 153 - 163 Page 154



Definition 2: A set of heterogeneous virtual machines 
𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, … , 𝑣𝑚𝑛}, where each virtual machine is 
described with a senary as follows: 

𝑣𝑚𝑗 =< 𝐼𝑑𝑗 , 𝑃𝑟𝑃𝑜𝑤𝑗 , 𝑅𝑎𝑚𝑗 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑗 , 𝐵𝑤𝑗 , 𝐶𝑜𝑠𝑡𝑗 > (2) 

The above symbols indicate the unique identification, 
processing power, main memory, storage space, 
communication bandwidth and the usage cost of the virtual 
machine, respectively. 

Definition 3: A set of physical machines PM =

{pm1, pm2, … , pmp} where each physical machine can host 
one or more virtual machines. 

Definition 4: Assignment function 𝑓: 𝑇 × 𝑉𝑀 → {0, 1} 
which is defined as follows: 

𝑓(𝑡𝑖 , 𝑣𝑚𝑗) = {
1 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑣𝑚𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3) 

The relationship ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) = 1𝑛
𝑗=1  is established for each 

𝑡𝑖. 
Definition 5: Task execution time of 𝑡𝑖 on the virtual 

machine 𝑣𝑚𝑗 is determined as follows: 

𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 =
𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑃𝑟𝑃𝑜𝑤𝑗
 (4) 

Definition 6: The execution cost of task ti on the virtual 
machine vmj is specified as follows: 

𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖𝑗 =  𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 × 𝐶𝑜𝑠𝑡𝑗 (5) 

Definition 7: The time it takes for a virtual machine to 
complete the mapped tasks is considered as the completion 
time for the virtual machine: 

𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗 =  ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) ∙ 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗

𝑚

𝑖=1

 (6) 

Definition 8: The completion time of task 𝑡𝑖 on the virtual 
machine  𝑣𝑚𝑗 (if we want to send  𝑡𝑖 to  𝑣𝑚𝑗 to run) is defined 
as follows: 

𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 = 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 + 𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗 (7) 

According to the above relationship, the task completion time 
is obtained from the sum of the task execution time and the 
waiting time for the task to be executed. 

Definition 9: The makespan for a set of scheduled tasks is 
defined as follows: 

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓) = Max{𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗| 𝑗 = 1, … , 𝑛} (8) 

Definition 10: Assuming that the task 𝑡𝑖 is mapped to the 
virtual machine 𝑣𝑚𝑗, the number of violated deadlines is 

specified as follows: 

𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑓)

= 𝑁𝑢𝑚𝑏𝑒𝑟{𝑡𝑖| 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖

< (𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖)} (9) 

𝐷𝑒𝑙𝑎𝑦𝑖 specifies the presence duration of the  𝑡𝑖 task in the 
scheduler as follows: 

𝐷𝑒𝑙𝑎𝑦𝑖 = 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑇𝑖𝑚𝑒𝑖 − 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 (10) 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑇𝑖𝑚𝑒𝑖 specifies the task scheduling moment  𝑡𝑖 and 
𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 determines the time of recording task  𝑡𝑖 in the 
scheduler. 

Definition 11: The (economic) cost of mapping (total 
execution cost) for a set of mapped tasks is calculated as 
follows: 

𝐸𝑥𝑒𝐶𝑜𝑠𝑡(𝑓) = ∑ ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) ∙ 𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (11) 

Definition 12: After scheduling a set of tasks, the following 
relation determines the distribution of the load on the virtual 
machines: 

𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)

= 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛{𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗| 𝑗

= 1, … , 𝑛} (12) 

Definition 13: A parameter called overall improvement is 
defined as follows, which determines the overall improvement 
created by the CM3 method based on all scheduling objectives. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑓)
= 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)) (13) 

Based on the above definitions, the scheduling problem can 
be formulated as follows: 
The input of the problem is a m-member set of tasks belonging 
to users with different priority levels that have a certain length 
and deadline, and the output is a function of assigning f such 
that: 

∃𝑔 ∈ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓) < 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑔) (14) 
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                       AND 

𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑓)
< 𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑔) 

                       AND 
(15) 

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑓)
< 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑔) 

                       AND 
(16) 

𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)
< 𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑔) (17) 

In the CM3 method, we seek to simultaneously 
decrease/increase scheduling objectives in mapping tasks to 
virtual machines, so that the overall compromised response is 
created and therefore not necessarily all of them are optimal. 

B. Prioritization of Tasks 

In the CM3 method, tasks are prioritized based on multi-
criteria and dynamic priority. Multi-criteria priority is a 
combination of the criteria of user level (type), deadline and 
task length. Therefore, the values corresponding to the 
mentioned criteria should be normalized to the desired interval 
[d1, d2] based on the following relation: 

𝑛𝑜𝑟𝑚𝑋𝑖 = 𝑑1 + (
𝑋𝑖 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
) × (𝑑2

− 𝑑1) 

𝑑1, 𝑑2 ∈ ℚ+ 

(18) 

After normalizing the values corresponding to the criteria, 
the multi-criteria priority is determined as follows for each 
task 𝑡𝑖: 

𝑀𝑢𝑙𝑡𝑖𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

= 𝑤𝑢 × 𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐸𝑓𝑓𝑒𝑐𝑡𝑖

+ 𝑤𝑑

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝑖)
+ 𝑤𝑙 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑙𝑒𝑛𝑔𝑡ℎ𝑖) 

𝑤𝑢 + 𝑤𝑑 + 𝑤𝑙 = 1 

(19) 

The weights wu, wd and wl are specified by the system 
administrator based on user preferences as follows: 

𝑤𝑢 = 𝛼𝑢𝑑𝑙 

𝑤𝑑 = 𝛽𝑑𝑙 × (1 − 𝛼𝑢𝑑𝑙)       𝛼𝑢𝑑𝑙 ∈ [0, 1] 

𝑤𝑙 = (1 − 𝛽𝑑𝑙) × (1 − 𝛼𝑢𝑑𝑙)       𝛽𝑑𝑙 ∈ [0, 1] 

(20) 

𝛼𝑢𝑑𝑙 balances 𝑤𝑢 and { 𝑤𝑑,  𝑤𝑙}, and 𝛽𝑑𝑙 balances  𝑤𝑑 and 
 𝑤𝑙. By selecting 𝛼𝑢𝑑𝑙 and 𝛽𝑑𝑙 according to the users’ 
preferences, the system administrator determines the 
effectiveness of user level criteria, deadline, and length in the 
task priority. 

The user level for each task  𝑡𝑖 will be effective in 
determining the multi-criteria priority as follows: 

𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐸𝑓𝑓𝑒𝑐𝑡𝑖 = 𝑎 + (𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖 − 1) ×
𝑏 − 𝑎

𝑘 − 1
 

𝑎, 𝑏 ∈ [𝑑1, 𝑑2] 
𝑎 < 𝑏 

(𝑏 − 𝑎) ∝ 𝐾 

(21) 

The higher the level of a user, the earlier the execution of his 
tasks should be started. Therefore, the task’s user level directly 
affects the determination of UserLevelEffect. 
In relationship 21, K denotes the number of user levels, k 
represents the highest user level and 1 is the lowest user level. 
Another effective criterion in determining the multi-criteria 
priority is the deadline for each task  𝑡𝑖 as following: 

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝑖 =
1

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
 (22) 

To improve the makespan of the tasks, the length of the task 
will directly affect the multi-criteria prioritization. In addition 
to considering multi-criteria in the priority, dynamic priority 
also plays a role in determining the final priority of tasks. For 
this purpose, a dynamic priority value for tasks is calculated 
during the scheduling period and after the time interval of Δt 
derived from Equation 23. 

Δ𝑡 =
𝑆𝐷

𝐶 + 1
 (23) 

In this formula, SD specifies the scheduling duration 
(duration of executing scheduling operations) and C represents 
the number of calculations of the dynamic priority. The 
scheduling duration is determined according to the time 
complexity of the algorithm. The value of C is also set by the 
system administrator. 

After the time period of Δt, the time elapsed from the 
registration of the task in the scheduler, for the set of 
unmapped tasks, is calculated as follows: 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 (24) 

CurrentTime and 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 specify the current time and 
the task registration time in the scheduler, respectively. 
Dynamic priority is directly related to Difference value and 
inversely related to the task deadline which is determined for 
each task 𝑡𝑖 based on the following relation. 
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𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

= 𝑤𝑑𝑖𝑓𝑓

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖)

+ 𝑤𝑑𝑑𝑝 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(
1

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
) 

𝑤𝑑𝑑𝑝 ∈ [0, 1]    𝑤𝑑𝑖𝑓𝑓 = 1 − 𝑤𝑑𝑑𝑝 

(25) 

The final priority of task 𝑡𝑖 is calculated from a combination 
of multi-criteria priority and dynamic priority as follows: 

𝑇𝑎𝑠𝑘𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 = 𝑤𝑚𝑐𝑝 × 𝑀𝑢𝑙𝑡𝑖𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

+ 𝑤𝑑𝑝 × 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 

𝑤𝑚𝑐𝑝 ∈ [0, 1] 𝑤𝑑𝑝 = 1 − 𝑤𝑚𝑐𝑝 

(26) 

According to the above explanations, dynamic prioritization 
allows changing the task priority during scheduling and in 
favor of deadline criteria and the time duration of task 
registration in the scheduler. 

C. Selection of Virtual Machines 

In order to meet the scheduling objectives, the most priority 
task must be mapped to a virtual machine with high 
processing power, low workload and low usage cost. 
Therefore, the virtual machine is selected based on the above 
three criteria as follows: 

𝑉𝑀𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑗 = 𝑤𝑝 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑃𝑟𝑃𝑜𝑤𝑗) +

𝑤𝑤 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑗) +

𝑤𝑐 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑗)  
𝑤𝑝 + 𝑤𝑤 + 𝑤𝑐 = 1 

(27) 

The values of the weights 𝑤𝑝,  𝑤𝑤 and  𝑤𝑐 are specified as 
follows according to the needs and importance of the different 
scheduling objectives: 

𝑤𝑐 = 𝛼𝑐𝑝𝑤       𝛼𝑐𝑝𝑤 ∈ [0, 1] 
𝑤𝑝 = 𝛽𝑝𝑤 × (1 − 𝛼𝑐𝑝𝑤)       𝛽𝑝𝑤 ∈ [0, 1] 

𝑤𝑤 = (1 − 𝛽𝑝𝑤) × (1 − 𝛼𝑐𝑝𝑤)   
(28) 

𝛼𝑐𝑝𝑤 balances 𝑤𝑐 and { 𝑤𝑝, 𝑤𝑤}, and 𝛽𝑝𝑤 balances 𝑤𝑝 and 
 𝑤𝑤. By selecting the values for 𝛼𝑐𝑝𝑤 and 𝛽𝑝𝑤, the system 
administrator determines the effectiveness of the usage cost, 
processing power and workload criteria in selecting the virtual 
machine. 

According to Equation 27 processing power directly affects 
the selection of virtual machine, and according the following 
equations, workload and usage cost have the inverse effect: 

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑗 =
1

𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗
 (29) 

𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑗 =
1

𝐶𝑜𝑠𝑡𝑗
 

(30) 

D. Mapping Tasks to virtual machines using the elastic 

property 

After determining the priority values of tasks and 
VMSelection of virtual machines, the operation of mapping 
tasks to virtual machines is started according to the presented 
explanations and by using the elastic feature.  

It should be noted that in the first round of scheduling, 
WorkloadEffect values cannot be defined because the 
completion time of all virtual machines is zero. Therefore, 
VMSelection values are calculated only based on the 
processing power and usage cost. In the continuation of 
scheduling steps, in order to normalize and influence 
WorkloadEffect in selecting the virtual machine, a special 
method is used as follows.  

Virtual machines with zero completion time have better 
status in terms of workload and their selection probability 
should be higher. Therefore, the WorkloadEffect values are 
normalized so that the normalized WorkloadEffect value of 
such machines be considered equal to 𝑑2 and for other virtual 
machines of the range [𝑑1, 𝑑2). This normalization process 
continues until the completion time of all virtual machines 
gets a value; WorkloadEffect values are then normalized 
usually through Equation (18). 

During task mapping, for the most priority task, the set of 
candidate virtual machines that satisfy the condition 
𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − 𝐷𝑒𝑙𝑎𝑦𝑖 is determined, and the 
machine with the largest VMSelection is selected in this set. 
The use of elasticity is considered if there is no candidate 
virtual machine.  

The elasticity of the cloud allows to increase/decrease the 
capacity of the resources to adequately satisfy the demand. To 
this end, each virtual machine has an elastic capacity that is 
provisioned to respond to peak loads. In the CM3 method, this 
capacity flexibility is used to cover as many deadlines as 
possible. This feature will be used for possible coverage of the 
tasks’ deadline that will be violated by executing on the 
normal capacity of virtual machines. 

If 𝑡𝑖 is the most priority task, 𝑣𝑚𝑗 is the virtual machine 
with the largest value of VMSelection in the virtual machines 
set, and the sum of completion time of 𝑣𝑚𝑗 (before 𝑡𝑖 is 
mapped) and 𝐷𝑒𝑙𝑎𝑦𝑖 is less than the deadline of task 𝑡𝑖; the 
proper execution time to cover the deadline is calculated using 
the following equation: 
𝑃𝑟𝑜𝑝𝑒𝑟𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖

= 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗

+ 𝐷𝑒𝑙𝑎𝑦𝑖) (31) 

To achieve proper execution time and coverage of 𝑡𝑖 deadline, 
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adequate processing power must be calculated through the 
following equation: 

𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑃𝑟𝑃𝑜𝑤𝑖 = ⌈
𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑃𝑟𝑜𝑝𝑒𝑟𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖
⌉ (32)

If the elasticity processing power of 𝑣𝑚𝑗 is higher than or
equal to the adequate processing power, the processing power 
of the virtual machine increases to the value calculated in 
Equation 32, the task 𝑡𝑖 is executed on it and the processing
power returns to its original value at the end of its execution. 

According to the explanations, the time deadline and effort 
to cover it, in addition to prioritizing the tasks, are also 
considered in the selection of the virtual machine by using 
elasticity and determining the candidate virtual machines. 

In CM3 method, all tasks are assumed to be of soft real time 
type. Therefore, the penalty function for each 𝑡𝑖 task is defined
as follows: 
𝑃(𝑡𝑖) =

{
0 𝑖𝑓 𝐶𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖 ≤ 𝐷𝑖

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑎𝑡𝑒𝑖 × (𝐶𝑖𝑗 − 𝐷𝑖) 𝑖𝑓 𝐶𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖 > 𝐷𝑖

𝐶𝑖𝑗: 𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗     𝐷𝑖: 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖

PenaltyRate𝑖

=
𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖 × 𝑀𝑖𝑛𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑉𝑎𝑙𝑢𝑒 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑀𝑎𝑥𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑉𝑎𝑙𝑢𝑒 × 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 × 𝑀𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑙𝑢𝑒

(33)

Where, (𝐶𝑖𝑗 − 𝐷𝑖) represents the deadline violation rate and
𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑎𝑡𝑒𝑖 also determine the penalty rate of the task 𝑡𝑖.
Fig. 2 shows the steps of the CM3 method in the form of an 
operational schema.  

IV. RESULTS AND DISCUSSION

The proposed method with three methods of max-min 
(Max-Min) [17] as the basic method and deadline and suffrage 
aware method (DSAware) [20] and based on QoS-driven (TS-
QoS) [21] due to the nature of the proposed method is 
compared and evaluated. Table I compares the mentioned 
methods subjectively.  

NetBeansIDE 12.6 code editor and CloudSim 4.0 tools have 
been used to simulate the methods. It is also assumed that the 
tasks are computation-intensive tasks, and their main 
requirement is processing requirement. The data set in [28] 
has been used to create the required tasks. 

Fig. 2. Operational schema of CM3 method 

TABLE I 
SUBJECTIVE COMPARISON OF METHODS 

Algorithm Objectives Scheduling criteria Type Advantages Disadvantages 

TS-QoS makespan, load balancing 
user level, length, urgency, 
duration of presence in the 

scheduler 

heuristic, batch 
mode, dynamic 

possibility of tuning 
different criteria 

selecting virtual 
machine 

DSAware deadline coverage, 
makespan deadline heuristic, batch 

mode, static 
easy implementation, 

effective deadline coverage 

single criterion, 
selecting virtual 

machine 

Max-Min makespan, load balancing length heuristic, batch 
mode, static 

suitable makespan, easy 
implementation 

single criterion, 
selecting virtual 

machine 

CM3 
makespan, deadline 

coverage, execution cost, 
load balancing 

user level, length, deadline, 
duration of presence in the 

scheduler 

heuristic, batch 
mode, dynamic 

multi-objective, possibility 
of tuning different criteria, 

using elasticity 
centralized 
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A. Test 1 (Identical Criteria Weight) 

 
The virtual machine selected in the CM3 method does not 

necessarily provide the minimum completion time for the task. 
This issue leads to an increase in the completion time of 
virtual machines and, according to definition 9, an increase in 
the makespan especially in mapping tasks with a long 
execution time.  

By examining the scheduling steps for the cases of 8000 
and 10000 tasks, it is determined that in the first scheduling 
cycle, a task with a longer execution time than other tasks in 
the tasks set (350 million instructions) is mapped to a virtual 
machine with a processing power of 1137 million instructions 
per second at a cost of approximately 0.0017 $/s which is the 
lowest usage cost among all virtual machines. It helps to 
improve the total execution cost. 

 
Given that the task deadline for all cases (from 1500 tasks 

to 10000 tasks) is selected from the range [5, 20], as the 
number of tasks increases, the number of candidate virtual 
machines available for the most priority task decreases . 
Increasing the number of tasks, especially when accompanied 
by increasing the length of tasks (from 5000 tasks onwards) 
intensifies the short age of candidate virtual machines. One of 
the criteria involved in prioritizing a task is length. Very long 
tasks, especially those with a short deadline and a high user 
level, reduce the number of candidate virtual machines for 
subsequent tasks by mapping on virtual machines and 
increasing machine completion time in the initial stages of 
scheduling. In addition, the possibility of using the elasticity 
feature decreases with increasing the completion time 
(workload) of virtual machines. Thus, the CM3 method is not 

effective in terms of time deadline coverage for higher number 
of tasks compared to lower number of tasks as shown in Fig. 
4. 

 
Since CM3 tends to select virtual machines with low usage 

costs, this method decreases total execution cost in all cases 
according to Fig. 5. 

 
Mapping a task with a long execution time on the virtual 

machine, which does not necessarily provide the minimum 
completion time, causes a difference between the completion 
time of that virtual machine and other virtual machines and 
causes problem for the load balancing according to definition 
12. This happened in the CM3 method in scheduling 6500, 
8000 and 10000 tasks, where the data set includes tasks with 
long execution time as shown in Fig. 6. 

 

As the number of tasks increases, the performance of the 
CM3 method in terms of makespan, load balancing, and to 

 
Fig. 3. Makespan – Test 1 
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Fig. 4. Deadline violation – Test1 
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Fig. 5. Total execution cost – Test 1 
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Fig. 6. Load balancing – Test 1 
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Fig. 7. Overall improvement – Test 1 

0

0.1

0.2

0.3

0.4

0.5

0.6

1500 2500 3500 4500 5000 6500 8000 10000

O
ve

ra
ll 

Im
p

ro
ve

m
e

n
t

Number of Tasks

QoS-driven DSAware Max-Min CM3

AJSE Volume 22, Issue 2, Page 153 - 163 Page 159



some extent the number of deadline violations decreases. 
Since the overall improvement rate of the four factors of 
makespan, number of deadline violations, total execution cost 
and load balancing are affected equally, therefore, this method 
has not suitable performance generally for a greater number of 
tasks according to Fig. 7. 

B. Test 2 (Increasing the Number of Virtual Machines) 

In the second test, the results are examined by increasing 
the number of virtual machines to 100. Figures 8, 9, 10, 11, 12 
show the effect of this change on the intended objectives. 

 
 The weighting of the criteria and the mapping of the tasks 

to the virtual machines have not changed in this test. 
Therefore, the CM3 method according to Fig. 8 has not the 
proper makespan in the cases of 6500, 8000, and 10000 tasks. 

 

As the number of virtual machines increases, there will be 
an appropriate number of candidate virtual machines at each 
stage of the scheduling and for mapping each task. In addition, 
due to the reduction of the workload of virtual machines, it is 
possible to use the elastic property more effectively; therefore, 
better performance in covering the deadline than the first test 
has been achieved by comparison of Figures 4, 9. 

 
The CM3 method considers the usage cost in the virtual 

machine selection, so it has a lower total execution cost in all 
cases in this test, as shown in Fig. 10. 

 
The weights of the criteria and the tasks’ mapping rules 

have not changed in this test. Therefore, the load is more 
imbalanced for the cases of 6500, 8000, and 10000 tasks in the 
CM3 method, as shown in Fig. 11. 

Increasing the weights of 𝑤𝑝 and 𝑤𝑤 during scheduling and 
for specific tasks can help to improve the completion time of 
virtual machines and thus the load balancing to some extent, 
although it reduces the role of usage cost in choosing virtual 
machines.  

 

Increasing the number of virtual machines has had a 
positive effect on the deadlines covered by the CM3 method, 
especially for the cases where the tasks set includes a greater 
number of tasks. Therefore, this method has a better overall 

 
Fig. 8. Makespan – Test 2 
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Fig. 9. Deadline violation – Test 2 
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Fig. 10. Total execution cost – Test 2 
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Fig. 11. Load balancing – Test 2 
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Fig. 12. Overall improvement – Test 2 
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performance than the first test and for more tasks according to 
Figures 7, 12. 

C. Test 3 (Changing Weights to Reduce Makespan) 

To improve the situation of makespan and load balancing, 
we consider the weight of the criteria as follows and we repeat 
the tests on 50 virtual machines. 

 

 
By the weights changing and increasing the role of 

workload and processing power, a virtual machine is selected 
in each cycle of scheduling operations which provides less 
completion time for the task compared to the first test. 
Therefore, a more appropriate mapping is provided in terms of 
task completion time, and according to the definition 9, the 
makespan becomes more appropriate as shown in Fig. 13. 

 

Due to the increase in the effectiveness of the task length 
and the decrease in the effectiveness of the deadline in 
determining the priority of tasks, by comparison of Figures 4, 
14 is determined that deadline violations increase compared to 
the first test. Also, as mentioned in the first test, if the set of 
tasks includes greater number of tasks, with the progress of 
scheduling stages, the number of candidate virtual machines as 
well as the possibility of using elasticity decreases due to the 
increase in completion time (workload) of virtual machines. 
Therefore, the deadline violations of the method for 6500, 
8000, and 10000 tasks, are more than other cases. 

 
The CM3 method still has better performance than the other 

methods in terms of total execution cost due to considering the 
cost of using virtual machines in scheduling operations. 
However, according to the reduction in the weight of 𝑤𝑐 in the 
selection of the virtual machine, the total execution cost has 
increased compared to the first test and in most cases. 

 
Given the changes in the weight of the criteria, the selected 

virtual machine in each mapping provides a less completion 
time for the task. So the completion time of the virtual 
machines does not deviate much from the average completion 
time at the end of the scheduling operation, the load balancing 
has been improved compared to the first test by comparison of 
Figures 6, 16. 
 

 
 
 
 

wl = 0.35 wd = 0.33 wu = 0.32 

ww = 0.36 wp = 0.34 wc = 0.3 

 

 
Fig. 13. Makespan – Test 3 
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Fig. 14. Deadline violation – Test 3 

0

2000

4000

6000

8000

10000

12000

1500 2500 3500 4500 5000 6500 8000 10000

D
e

ad
lin

e
 V

io
la

ti
o

n

Number of Tasks

QoS-driven DSAware Max-Min CM3

 
Fig. 15. Total execution cost – Test 3 
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Fig. 16. Load balancing – Test 3 
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Fig. 17. Overall improvement – Test 3 
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In this test, the better status of makespan and load balancing 

have improved the overall performance of the CM3 method, 
especially for 6500, 8000, and 10000 tasks, compared to the 
first test and according to Figures 7, 17. 

D. Different Applications of the Proposed Method 

In the CM3 method, the weights of effective criteria in 
prioritizing tasks and selecting virtual machines can be 
changed as needed. For example, in the forthcoming tests the 
results of the changes of 𝑤𝑢, 𝑤𝑐 will be examined and 
evaluated. 

Increasing the value of 𝑤𝑢 in Equation 19 will decrease the 
completion time of the tasks with higher user level. Fig. 18 has 
shown the effect of increasing this weight at the completion 
time of the tasks of level 3. 

 
To reduce the total execution cost of the tasks, the weight of 

the relevant criterion in the virtual machine selection relation 
should be increased. In this test, the weight of different criteria 
is determined as follows: 

 
V. CONCLUSION 

The results of various tests show that the CM3 method in 
most cases, and especially compared to the TS-QoS method 
which is a multi-criteria method, has been able to improve the 
makespan and load balancing. Although CM3 sometimes has 
weaker performance than the single criterion (DSAware) 
method, it has acceptable performance in terms of number of 
deadline violations. It also works better than other methods in 
terms of execution cost in almost all cases. In addition, 
depending on the situation and per the desired objective, by 
changing the weight of the criteria, the desired result can be 
achieved. This factor distinguishes the proposed method from 
other methods in addition to considering different effective 
criteria. 

 

 
Although the statement of the proposed method’s 

adaptability may be seemed ambitious, the use of artificial 
intelligence algorithms to adjust the weight of the criteria does 
not take this away from the mind. Therefore, as a future work, 
the CM3 method can be adapted based on scheduling 
objectives and during scheduling operations. Other 
suggestions for future studies are the distribution of the 
scheduling unit, determination of the value of parameter C to 
achieve the best state of makespan and load balancing, using 
the CM3 method in a hybrid cloud environment to further 
reduce the total execution cost, generalizing the criteria for 
selecting virtual machines, and using the method for 
dependent tasks. 
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