
Abstract— Task scheduling determines the order of mapping
tasks to virtual machines to meet objectives. In this paper, a
batch mode heuristic method that is centralized, dynamic, and
multi-objective has been presented for scheduling independent
tasks with a deadline and belonging to several user levels, using
the cloud elasticity in the public cloud environment. In this
method, it has been intended to improve the objectives of
makespan, deadline violation, total execution cost, and load
balancing by considering the tasks’ prioritization based on the
criteria of user level, deadline, task length, and selection of
heterogeneous virtual machines according to processing power,
workload and usage cost. The proposed method was simulated
using the CloudSim tool. Besides, the method’s ability to achieve
the mentioned goals has been evaluated in comparison with
similar methods. The evaluation results, established on standard
test data, show that the proposed method has a good
performance in improving its objectives.

Index Terms— Cloud computing, Scheduling the tasks with
deadline, Multi-criteria prioritization, Elasticity.

I. INTRODUCTION

LOUD computing is a model for providing easy access
to a set of changeable and configurable computing

resources (networks, servers, storage space, applications, and
services) based on user demand over the network. The access
also can be provided or released quickly with the lowest
resource management requirements and the service provider’s
direct intervention [1].

 Scheduling tasks in cloud computing means mapping tasks
to virtual machines in a way that the service requirements’
quality requested by cloud customers are met mainly within
the agreed service level [2, 3].

Cloud task scheduling is a challenging and macro issue
following the main objectives of improving execution and
service quality, reducing execution cost and response time
while maintaining task’s performance and integrity. An

Ehsan Shojaeian is with the Computer Engineering Department, Science
and Research Branch, Islamic Azad University, Tehran, Iran (e-mail:
ehsan.shojaeian@srbiau.ac.ir).

Mehran Mohsenzadeh is with the Computer Engineering Department,
Science and Research Branch, Islamic Azad University, Tehran, Iran (e-mail:
mohsenzadeh@srbiau.ac.ir).

Mohammad Mehdi Sahrapour is with the Business School, Monash
University, 900 Dandenong Rd, Caulfield East VIC, Australia (e-mail:
sahrapour@gmail.com).

efficient scheduling algorithm can be created by considering
existing methods and adding other criteria such as user level to
it [4]. Furthermore, a scheduling algorithm must take into
account the interests of the two parties involved in the
interaction, which are the service provider and the service
consumer [5-8].

Several users with different priority levels may be using the
cloud service at the same time. Therefore, in addition to the
common criteria such as length of execution time and
deadline, users’ priority levels should also be considered as
one of the criteria in scheduling tasks. The criteria for
prioritization in the proposed method are the users’ priority
levels and the tasks’ length and deadline. Besides, the
selection of virtual machine established on the criteria of
processing power, workload and usage cost. Hence, it is
possible to delete or add new criteria as needed. Depending on
the situation and in accordance with the desired objective, by
changing the weight of the criteria, the desired result can be
achieved. This factor distinguishes the proposed method from
other methods in addition to considering different effective
criteria.

The proposed method is a dynamic multi-criteria method
that can be used in different scenarios by providing the
possibility of adjusting the effectiveness of these criteria.
Dynamic prioritization has been also used to prevent tasks
starvation and to consider their deadline during scheduling.

II. LITERATURE REVIEW

Various task scheduling methods have been presented based
on the criteria involved in scheduling and the objectives that
the scheduler seeks to achieve. For example, energy
consumption, makespan, load balancing, and resource
utilization are the main objectives that various scheduling
algorithms try to improve [9-14].

In the max-min algorithm, a task with the longest execution
time is selected and assigned to the resource that provides the
shortest completion time for execution. This continues until all
tasks are scheduled. Although the min-min algorithm
functions almost similarly to the max-min algorithm, a task
with the shortest execution time is selected each time in the
min-min algorithm [15-17].

When the number of short tasks in the tasks set is greater
than the number of longer tasks, the min-min algorithm uses
fewer resources and does not allow simultaneous execution of

A Centralized Multi-Criteria Method for
Scheduling Tasks in a Cloud Computing

Environment
Ehsan Shojaeian, Mehran Mohsenzadeh, and Mohammad Mehdi Sahrapour

C

AIUB JOURNAL OF SCIENCE AND ENGINEERING
ISSN: 1608 – 3679 (print) 2520 – 4890 (Online)

Published in AJSE, Vol:22, Issue: 2
Received on 31th August 2022
Revised on 20th August 2023

Accepted on 22nd August 2023

AJSE Volume 22, Issue 2, Page 153 - 163 Page 153

tasks. As a result, the makespan will increase. Although the
max-min algorithm works better than the min-min algorithm
in this case, if the number of longer tasks is higher, it will
increase the makespan [18]. The min-min algorithm works in
favor of short tasks and improves the system throughput. Also,
starvation occurs for the shorter tasks in the max-min
algorithm [19].

Chaudhary [20] presented the Deadline and Suffrage Aware
Algorithm. This algorithm is similar to the min-min and max-
min algorithms of a single-criterion method. The tasks’
deadline, which is considered in the scheduling instead of the
execution time, spots the difference here. In this algorithm, if
the tasks are ranked in an ascending order based on deadline, a
task with the smallest deadline is mapped to a virtual machine
providing the least completion time for it. This method has a
better performance compared to the max-min and min-min
methods in all the considered goals.

Wu et al [21] provided a task scheduling algorithm based on
QoS-driven in cloud computing. This algorithm (TS-QoS)
prioritizes tasks based on the user privilege, urgency,
workload (length), and latency time. In the scheduling phase,
each task is assigned to the virtual machine which provides the
lowest completion time. This method considers several criteria
in prioritizing tasks, and the possibility of influencing each
criterion in determining priority can be adjusted; however, it is
more complex than single-criterion methods. In addition, it
often has a weaker performance than the min-min method in
terms of the makespan of tasks.

Most scheduling algorithms, including those mentioned
above, have been developed based on basic algorithms such as
Min-Min (which was previously used in computing
environments such as the Grid) and considering more criteria
for prioritizing tasks. Moreover, in most of these methods, the
virtual machine is selected based on the criterion of
completion time for the task with the highest priority. In the
proposed method, in addition to prioritizing based on multiple
criteria, we use the elasticity of the cloud environment and
increase the flexibility of the scheduler by allowing the virtual
machine to be selected based on several different criteria so
that it is possible to remove or add different criteria in the
selection of virtual machines according to the need.

III. PROPOSED METHOD
The proposed method is a centralized, dynamic and multi-

objective method that can be used in different scenarios by
providing the possibility of adjusting the effectiveness of these
criteria. Dynamic prioritization has been also used to prevent
tasks starvation and to consider their deadline during
scheduling.

In this method, in addition to the independence of tasks, it is
assumed that tasks with a certain length and deadline are sent
to the cloud from the users with different priority levels. these
users are classified based on items such as payments, loyalty,
etc, and are not fixed. he/she can increase or decrease the
priority level of executing the tasks by paying higher or lower
cost. Also, the scheduling platform is public cloud, and all
tasks are soft real-time type.

The model shown in Fig. 1 is used to illustrate the proposed
method. This model has been proposed and developed using
the concepts of task scheduling in distributed systems as well
as the concepts and solutions presented in [22-24]. Each cloud
system consists of a number of data centers, and each data
center contains several physical hosts. There are also a number
of virtual machines on each of these hosts. Specifications and
configurations of different data centers are registered in a
service called cloud information service. Users from different
levels interact with different applications, in which a series of
tasks are created and recorded in the cloud scheduler.

Since scheduling operations are performed after the

accumulation of a number of tasks in the scheduler, based on a
set of rules and in order to improve several objectives, the
CM3 method falls into the category of batch mode heuristic
scheduling methods and includes the following three main
steps:
1) Prioritizing tasks
2) Selection of heterogeneous virtual machines
3) Mapping tasks to virtual machines using elasticity feature

A. Definitions

Some basic concepts and technical terms of the CM3
method, inspired by the definitions mentioned in [25-27] and
with changes and developments have been redefined or newly
defined below according to the objectives of our research.

Definition 1: The set of tasks 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}, where 𝑡𝑖
is independent of other tasks and each task is described by a
quadrant as follows:

𝑡𝑖 =< 𝐼𝑑𝑖 , 𝐿𝑒𝑛𝑔𝑡ℎ𝑖, 𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖, 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 > (1)

The above characteristics are the unique identification, length,
user level of the sender user, and the deadline of the task,
respectively.

Fig. 1. proposed method model

AJSE Volume 22, Issue 2, Page 153 - 163 Page 154

Definition 2: A set of heterogeneous virtual machines
𝑉𝑀 = {𝑣𝑚1, 𝑣𝑚2, … , 𝑣𝑚𝑛}, where each virtual machine is
described with a senary as follows:

𝑣𝑚𝑗 =< 𝐼𝑑𝑗 , 𝑃𝑟𝑃𝑜𝑤𝑗 , 𝑅𝑎𝑚𝑗 , 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑗 , 𝐵𝑤𝑗 , 𝐶𝑜𝑠𝑡𝑗 > (2)

The above symbols indicate the unique identification,
processing power, main memory, storage space,
communication bandwidth and the usage cost of the virtual
machine, respectively.

Definition 3: A set of physical machines PM =

{pm1, pm2, … , pmp} where each physical machine can host
one or more virtual machines.

Definition 4: Assignment function 𝑓: 𝑇 × 𝑉𝑀 → {0, 1}
which is defined as follows:

𝑓(𝑡𝑖 , 𝑣𝑚𝑗) = {
1 𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑣𝑚𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

The relationship ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) = 1𝑛
𝑗=1 is established for each

𝑡𝑖.
Definition 5: Task execution time of 𝑡𝑖 on the virtual

machine 𝑣𝑚𝑗 is determined as follows:

𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 =
𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑃𝑟𝑃𝑜𝑤𝑗
 (4)

Definition 6: The execution cost of task ti on the virtual
machine vmj is specified as follows:

𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖𝑗 = 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 × 𝐶𝑜𝑠𝑡𝑗 (5)

Definition 7: The time it takes for a virtual machine to
complete the mapped tasks is considered as the completion
time for the virtual machine:

𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗 = ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) ∙ 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗

𝑚

𝑖=1

 (6)

Definition 8: The completion time of task 𝑡𝑖 on the virtual
machine 𝑣𝑚𝑗 (if we want to send 𝑡𝑖 to 𝑣𝑚𝑗 to run) is defined
as follows:

𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 = 𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖𝑗 + 𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗 (7)

According to the above relationship, the task completion time
is obtained from the sum of the task execution time and the
waiting time for the task to be executed.

Definition 9: The makespan for a set of scheduled tasks is
defined as follows:

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓) = Max{𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗| 𝑗 = 1, … , 𝑛} (8)

Definition 10: Assuming that the task 𝑡𝑖 is mapped to the
virtual machine 𝑣𝑚𝑗, the number of violated deadlines is

specified as follows:

𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑓)

= 𝑁𝑢𝑚𝑏𝑒𝑟{𝑡𝑖| 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖

< (𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖)} (9)

𝐷𝑒𝑙𝑎𝑦𝑖 specifies the presence duration of the 𝑡𝑖 task in the
scheduler as follows:

𝐷𝑒𝑙𝑎𝑦𝑖 = 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑇𝑖𝑚𝑒𝑖 − 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 (10)

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑇𝑖𝑚𝑒𝑖 specifies the task scheduling moment 𝑡𝑖 and
𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 determines the time of recording task 𝑡𝑖 in the
scheduler.

Definition 11: The (economic) cost of mapping (total
execution cost) for a set of mapped tasks is calculated as
follows:

𝐸𝑥𝑒𝐶𝑜𝑠𝑡(𝑓) = ∑ ∑ 𝑓(𝑡𝑖 , 𝑣𝑚𝑗) ∙ 𝐸𝑥𝑒𝐶𝑜𝑠𝑡𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (11)

Definition 12: After scheduling a set of tasks, the following
relation determines the distribution of the load on the virtual
machines:

𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)

= 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛{𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗| 𝑗

= 1, … , 𝑛} (12)

Definition 13: A parameter called overall improvement is
defined as follows, which determines the overall improvement
created by the CM3 method based on all scheduling objectives.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡(𝑓)
= 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑛𝑔(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑓))
× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)) (13)

Based on the above definitions, the scheduling problem can
be formulated as follows:
The input of the problem is a m-member set of tasks belonging
to users with different priority levels that have a certain length
and deadline, and the output is a function of assigning f such
that:

∃𝑔 ∈ 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑓) < 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑔) (14)

AJSE Volume 22, Issue 2, Page 153 - 163 Page 155

 AND

𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑓)
< 𝑀𝑖𝑠𝑠𝑒𝑑𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒(𝑔)

 AND
(15)

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑓)
< 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡(𝑔)

 AND
(16)

𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑓)
< 𝐿𝑜𝑎𝑑𝐵𝑎𝑙𝑎𝑛𝑐𝑒(𝑔) (17)

In the CM3 method, we seek to simultaneously
decrease/increase scheduling objectives in mapping tasks to
virtual machines, so that the overall compromised response is
created and therefore not necessarily all of them are optimal.

B. Prioritization of Tasks

In the CM3 method, tasks are prioritized based on multi-
criteria and dynamic priority. Multi-criteria priority is a
combination of the criteria of user level (type), deadline and
task length. Therefore, the values corresponding to the
mentioned criteria should be normalized to the desired interval
[d1, d2] based on the following relation:

𝑛𝑜𝑟𝑚𝑋𝑖 = 𝑑1 + (
𝑋𝑖 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒

𝑀𝑎𝑥𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛𝑉𝑎𝑙𝑢𝑒
) × (𝑑2

− 𝑑1)

𝑑1, 𝑑2 ∈ ℚ+

(18)

After normalizing the values corresponding to the criteria,
the multi-criteria priority is determined as follows for each
task 𝑡𝑖:

𝑀𝑢𝑙𝑡𝑖𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

= 𝑤𝑢 × 𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐸𝑓𝑓𝑒𝑐𝑡𝑖

+ 𝑤𝑑

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝑖)
+ 𝑤𝑙 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑙𝑒𝑛𝑔𝑡ℎ𝑖)

𝑤𝑢 + 𝑤𝑑 + 𝑤𝑙 = 1

(19)

The weights wu, wd and wl are specified by the system
administrator based on user preferences as follows:

𝑤𝑢 = 𝛼𝑢𝑑𝑙

𝑤𝑑 = 𝛽𝑑𝑙 × (1 − 𝛼𝑢𝑑𝑙) 𝛼𝑢𝑑𝑙 ∈ [0, 1]

𝑤𝑙 = (1 − 𝛽𝑑𝑙) × (1 − 𝛼𝑢𝑑𝑙) 𝛽𝑑𝑙 ∈ [0, 1]

(20)

𝛼𝑢𝑑𝑙 balances 𝑤𝑢 and { 𝑤𝑑, 𝑤𝑙}, and 𝛽𝑑𝑙 balances 𝑤𝑑 and
 𝑤𝑙. By selecting 𝛼𝑢𝑑𝑙 and 𝛽𝑑𝑙 according to the users’
preferences, the system administrator determines the
effectiveness of user level criteria, deadline, and length in the
task priority.

The user level for each task 𝑡𝑖 will be effective in
determining the multi-criteria priority as follows:

𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝐸𝑓𝑓𝑒𝑐𝑡𝑖 = 𝑎 + (𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖 − 1) ×
𝑏 − 𝑎

𝑘 − 1

𝑎, 𝑏 ∈ [𝑑1, 𝑑2]
𝑎 < 𝑏

(𝑏 − 𝑎) ∝ 𝐾

(21)

The higher the level of a user, the earlier the execution of his
tasks should be started. Therefore, the task’s user level directly
affects the determination of UserLevelEffect.
In relationship 21, K denotes the number of user levels, k
represents the highest user level and 1 is the lowest user level.
Another effective criterion in determining the multi-criteria
priority is the deadline for each task 𝑡𝑖 as following:

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝑖 =
1

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
 (22)

To improve the makespan of the tasks, the length of the task
will directly affect the multi-criteria prioritization. In addition
to considering multi-criteria in the priority, dynamic priority
also plays a role in determining the final priority of tasks. For
this purpose, a dynamic priority value for tasks is calculated
during the scheduling period and after the time interval of Δt
derived from Equation 23.

Δ𝑡 =
𝑆𝐷

𝐶 + 1
 (23)

In this formula, SD specifies the scheduling duration
(duration of executing scheduling operations) and C represents
the number of calculations of the dynamic priority. The
scheduling duration is determined according to the time
complexity of the algorithm. The value of C is also set by the
system administrator.

After the time period of Δt, the time elapsed from the
registration of the task in the scheduler, for the set of
unmapped tasks, is calculated as follows:

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑚𝑒 − 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 (24)

CurrentTime and 𝑆𝑢𝑏𝑚𝑖𝑡𝑇𝑖𝑚𝑒𝑖 specify the current time and
the task registration time in the scheduler, respectively.
Dynamic priority is directly related to Difference value and
inversely related to the task deadline which is determined for
each task 𝑡𝑖 based on the following relation.

AJSE Volume 22, Issue 2, Page 153 - 163 Page 156

𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

= 𝑤𝑑𝑖𝑓𝑓

× 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖)

+ 𝑤𝑑𝑑𝑝 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(
1

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖
)

𝑤𝑑𝑑𝑝 ∈ [0, 1] 𝑤𝑑𝑖𝑓𝑓 = 1 − 𝑤𝑑𝑑𝑝

(25)

The final priority of task 𝑡𝑖 is calculated from a combination
of multi-criteria priority and dynamic priority as follows:

𝑇𝑎𝑠𝑘𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖 = 𝑤𝑚𝑐𝑝 × 𝑀𝑢𝑙𝑡𝑖𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

+ 𝑤𝑑𝑝 × 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑖

𝑤𝑚𝑐𝑝 ∈ [0, 1] 𝑤𝑑𝑝 = 1 − 𝑤𝑚𝑐𝑝

(26)

According to the above explanations, dynamic prioritization
allows changing the task priority during scheduling and in
favor of deadline criteria and the time duration of task
registration in the scheduler.

C. Selection of Virtual Machines

In order to meet the scheduling objectives, the most priority
task must be mapped to a virtual machine with high
processing power, low workload and low usage cost.
Therefore, the virtual machine is selected based on the above
three criteria as follows:

𝑉𝑀𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑗 = 𝑤𝑝 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑃𝑟𝑃𝑜𝑤𝑗) +

𝑤𝑤 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑗) +

𝑤𝑐 × 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑗)
𝑤𝑝 + 𝑤𝑤 + 𝑤𝑐 = 1

(27)

The values of the weights 𝑤𝑝, 𝑤𝑤 and 𝑤𝑐 are specified as
follows according to the needs and importance of the different
scheduling objectives:

𝑤𝑐 = 𝛼𝑐𝑝𝑤 𝛼𝑐𝑝𝑤 ∈ [0, 1]
𝑤𝑝 = 𝛽𝑝𝑤 × (1 − 𝛼𝑐𝑝𝑤) 𝛽𝑝𝑤 ∈ [0, 1]

𝑤𝑤 = (1 − 𝛽𝑝𝑤) × (1 − 𝛼𝑐𝑝𝑤)
(28)

𝛼𝑐𝑝𝑤 balances 𝑤𝑐 and { 𝑤𝑝, 𝑤𝑤}, and 𝛽𝑝𝑤 balances 𝑤𝑝 and
 𝑤𝑤. By selecting the values for 𝛼𝑐𝑝𝑤 and 𝛽𝑝𝑤, the system
administrator determines the effectiveness of the usage cost,
processing power and workload criteria in selecting the virtual
machine.

According to Equation 27 processing power directly affects
the selection of virtual machine, and according the following
equations, workload and usage cost have the inverse effect:

𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑗 =
1

𝐶𝑜𝑚𝑝𝑇𝑖𝑚𝑒𝑗
 (29)

𝐶𝑜𝑠𝑡𝐸𝑓𝑓𝑒𝑐𝑡𝑗 =
1

𝐶𝑜𝑠𝑡𝑗

(30)

D. Mapping Tasks to virtual machines using the elastic

property

After determining the priority values of tasks and
VMSelection of virtual machines, the operation of mapping
tasks to virtual machines is started according to the presented
explanations and by using the elastic feature.

It should be noted that in the first round of scheduling,
WorkloadEffect values cannot be defined because the
completion time of all virtual machines is zero. Therefore,
VMSelection values are calculated only based on the
processing power and usage cost. In the continuation of
scheduling steps, in order to normalize and influence
WorkloadEffect in selecting the virtual machine, a special
method is used as follows.

Virtual machines with zero completion time have better
status in terms of workload and their selection probability
should be higher. Therefore, the WorkloadEffect values are
normalized so that the normalized WorkloadEffect value of
such machines be considered equal to 𝑑2 and for other virtual
machines of the range [𝑑1, 𝑑2). This normalization process
continues until the completion time of all virtual machines
gets a value; WorkloadEffect values are then normalized
usually through Equation (18).

During task mapping, for the most priority task, the set of
candidate virtual machines that satisfy the condition
𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 ≤ 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − 𝐷𝑒𝑙𝑎𝑦𝑖 is determined, and the
machine with the largest VMSelection is selected in this set.
The use of elasticity is considered if there is no candidate
virtual machine.

The elasticity of the cloud allows to increase/decrease the
capacity of the resources to adequately satisfy the demand. To
this end, each virtual machine has an elastic capacity that is
provisioned to respond to peak loads. In the CM3 method, this
capacity flexibility is used to cover as many deadlines as
possible. This feature will be used for possible coverage of the
tasks’ deadline that will be violated by executing on the
normal capacity of virtual machines.

If 𝑡𝑖 is the most priority task, 𝑣𝑚𝑗 is the virtual machine
with the largest value of VMSelection in the virtual machines
set, and the sum of completion time of 𝑣𝑚𝑗 (before 𝑡𝑖 is
mapped) and 𝐷𝑒𝑙𝑎𝑦𝑖 is less than the deadline of task 𝑡𝑖; the
proper execution time to cover the deadline is calculated using
the following equation:
𝑃𝑟𝑜𝑝𝑒𝑟𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖

= 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 − (𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑗

+ 𝐷𝑒𝑙𝑎𝑦𝑖) (31)

To achieve proper execution time and coverage of 𝑡𝑖 deadline,

AJSE Volume 22, Issue 2, Page 153 - 163 Page 157

adequate processing power must be calculated through the
following equation:

𝐴𝑑𝑒𝑞𝑢𝑎𝑡𝑒𝑃𝑟𝑃𝑜𝑤𝑖 = ⌈
𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑃𝑟𝑜𝑝𝑒𝑟𝐸𝑥𝑒𝑇𝑖𝑚𝑒𝑖
⌉ (32)

If the elasticity processing power of 𝑣𝑚𝑗 is higher than or
equal to the adequate processing power, the processing power
of the virtual machine increases to the value calculated in
Equation 32, the task 𝑡𝑖 is executed on it and the processing
power returns to its original value at the end of its execution.

According to the explanations, the time deadline and effort
to cover it, in addition to prioritizing the tasks, are also
considered in the selection of the virtual machine by using
elasticity and determining the candidate virtual machines.

In CM3 method, all tasks are assumed to be of soft real time
type. Therefore, the penalty function for each 𝑡𝑖 task is defined
as follows:
𝑃(𝑡𝑖) =

{
0 𝑖𝑓 𝐶𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖 ≤ 𝐷𝑖

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑎𝑡𝑒𝑖 × (𝐶𝑖𝑗 − 𝐷𝑖) 𝑖𝑓 𝐶𝑖𝑗 + 𝐷𝑒𝑙𝑎𝑦𝑖 > 𝐷𝑖

𝐶𝑖𝑗: 𝐶𝑜𝑚𝑇𝑖𝑚𝑒𝑖𝑗 𝐷𝑖: 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖

PenaltyRate𝑖

=
𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑖 × 𝑀𝑖𝑛𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑉𝑎𝑙𝑢𝑒 × 𝐿𝑒𝑛𝑔𝑡ℎ𝑖

𝑀𝑎𝑥𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙𝑉𝑎𝑙𝑢𝑒 × 𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑖 × 𝑀𝑎𝑥𝐿𝑒𝑛𝑔𝑡ℎ𝑉𝑎𝑙𝑢𝑒

(33)

Where, (𝐶𝑖𝑗 − 𝐷𝑖) represents the deadline violation rate and
𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝑅𝑎𝑡𝑒𝑖 also determine the penalty rate of the task 𝑡𝑖.
Fig. 2 shows the steps of the CM3 method in the form of an
operational schema.

IV. RESULTS AND DISCUSSION

The proposed method with three methods of max-min
(Max-Min) [17] as the basic method and deadline and suffrage
aware method (DSAware) [20] and based on QoS-driven (TS-
QoS) [21] due to the nature of the proposed method is
compared and evaluated. Table I compares the mentioned
methods subjectively.

NetBeansIDE 12.6 code editor and CloudSim 4.0 tools have
been used to simulate the methods. It is also assumed that the
tasks are computation-intensive tasks, and their main
requirement is processing requirement. The data set in [28]
has been used to create the required tasks.

Fig. 2. Operational schema of CM3 method

TABLE I
SUBJECTIVE COMPARISON OF METHODS

Algorithm Objectives Scheduling criteria Type Advantages Disadvantages

TS-QoS makespan, load balancing
user level, length, urgency,
duration of presence in the

scheduler

heuristic, batch
mode, dynamic

possibility of tuning
different criteria

selecting virtual
machine

DSAware deadline coverage,
makespan deadline heuristic, batch

mode, static
easy implementation,

effective deadline coverage

single criterion,
selecting virtual

machine

Max-Min makespan, load balancing length heuristic, batch
mode, static

suitable makespan, easy
implementation

single criterion,
selecting virtual

machine

CM3
makespan, deadline

coverage, execution cost,
load balancing

user level, length, deadline,
duration of presence in the

scheduler

heuristic, batch
mode, dynamic

multi-objective, possibility
of tuning different criteria,

using elasticity
centralized

AJSE Volume 22, Issue 2, Page 153 - 163 Page 158

A. Test 1 (Identical Criteria Weight)

The virtual machine selected in the CM3 method does not

necessarily provide the minimum completion time for the task.
This issue leads to an increase in the completion time of
virtual machines and, according to definition 9, an increase in
the makespan especially in mapping tasks with a long
execution time.

By examining the scheduling steps for the cases of 8000
and 10000 tasks, it is determined that in the first scheduling
cycle, a task with a longer execution time than other tasks in
the tasks set (350 million instructions) is mapped to a virtual
machine with a processing power of 1137 million instructions
per second at a cost of approximately 0.0017 $/s which is the
lowest usage cost among all virtual machines. It helps to
improve the total execution cost.

Given that the task deadline for all cases (from 1500 tasks

to 10000 tasks) is selected from the range [5, 20], as the
number of tasks increases, the number of candidate virtual
machines available for the most priority task decreases .
Increasing the number of tasks, especially when accompanied
by increasing the length of tasks (from 5000 tasks onwards)
intensifies the short age of candidate virtual machines. One of
the criteria involved in prioritizing a task is length. Very long
tasks, especially those with a short deadline and a high user
level, reduce the number of candidate virtual machines for
subsequent tasks by mapping on virtual machines and
increasing machine completion time in the initial stages of
scheduling. In addition, the possibility of using the elasticity
feature decreases with increasing the completion time
(workload) of virtual machines. Thus, the CM3 method is not

effective in terms of time deadline coverage for higher number
of tasks compared to lower number of tasks as shown in Fig.
4.

Since CM3 tends to select virtual machines with low usage

costs, this method decreases total execution cost in all cases
according to Fig. 5.

Mapping a task with a long execution time on the virtual

machine, which does not necessarily provide the minimum
completion time, causes a difference between the completion
time of that virtual machine and other virtual machines and
causes problem for the load balancing according to definition
12. This happened in the CM3 method in scheduling 6500,
8000 and 10000 tasks, where the data set includes tasks with
long execution time as shown in Fig. 6.

As the number of tasks increases, the performance of the
CM3 method in terms of makespan, load balancing, and to

Fig. 3. Makespan – Test 1

0

50

100

150

200

250

300

350

1500 2500 3500 4500 5000 6500 8000 10000

M
ak

e
sp

an
 (

m
s)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 4. Deadline violation – Test1

0

2000

4000

6000

8000

10000

12000

1500 2500 3500 4500 5000 6500 8000 10000

D
e

ad
lin

e
 V

io
la

ti
o

n

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 5. Total execution cost – Test 1

0

50

100

150

200

250

1500 2500 3500 4500 5000 6500 8000 10000

C
o

st
 (

$
)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 6. Load balancing – Test 1

0

5

10

15

20

25

30

35

40

1500 2500 3500 4500 5000 6500 8000 10000

Lo
ad

 B
al

an
ci

n
g

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 7. Overall improvement – Test 1

0

0.1

0.2

0.3

0.4

0.5

0.6

1500 2500 3500 4500 5000 6500 8000 10000

O
ve

ra
ll

Im
p

ro
ve

m
e

n
t

Number of Tasks

QoS-driven DSAware Max-Min CM3

AJSE Volume 22, Issue 2, Page 153 - 163 Page 159

some extent the number of deadline violations decreases.
Since the overall improvement rate of the four factors of
makespan, number of deadline violations, total execution cost
and load balancing are affected equally, therefore, this method
has not suitable performance generally for a greater number of
tasks according to Fig. 7.

B. Test 2 (Increasing the Number of Virtual Machines)

In the second test, the results are examined by increasing
the number of virtual machines to 100. Figures 8, 9, 10, 11, 12
show the effect of this change on the intended objectives.

 The weighting of the criteria and the mapping of the tasks

to the virtual machines have not changed in this test.
Therefore, the CM3 method according to Fig. 8 has not the
proper makespan in the cases of 6500, 8000, and 10000 tasks.

As the number of virtual machines increases, there will be
an appropriate number of candidate virtual machines at each
stage of the scheduling and for mapping each task. In addition,
due to the reduction of the workload of virtual machines, it is
possible to use the elastic property more effectively; therefore,
better performance in covering the deadline than the first test
has been achieved by comparison of Figures 4, 9.

The CM3 method considers the usage cost in the virtual

machine selection, so it has a lower total execution cost in all
cases in this test, as shown in Fig. 10.

The weights of the criteria and the tasks’ mapping rules

have not changed in this test. Therefore, the load is more
imbalanced for the cases of 6500, 8000, and 10000 tasks in the
CM3 method, as shown in Fig. 11.

Increasing the weights of 𝑤𝑝 and 𝑤𝑤 during scheduling and
for specific tasks can help to improve the completion time of
virtual machines and thus the load balancing to some extent,
although it reduces the role of usage cost in choosing virtual
machines.

Increasing the number of virtual machines has had a
positive effect on the deadlines covered by the CM3 method,
especially for the cases where the tasks set includes a greater
number of tasks. Therefore, this method has a better overall

Fig. 8. Makespan – Test 2

0

50

100

150

200

250

300

350

1500 2500 3500 4500 5000 6500 8000 10000

M
ak

e
sp

an
 (

m
s)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 9. Deadline violation – Test 2

0

2000

4000

6000

8000

10000

12000

1500 2500 3500 4500 5000 6500 8000 10000

D
e

ad
lin

e
 V

io
la

ti
o

n

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 10. Total execution cost – Test 2

0

50

100

150

200

250

1500 2500 3500 4500 5000 6500 8000 10000

C
o

st
 (

$
)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 11. Load balancing – Test 2

0

5

10

15

20

25

30

35

40

1500 2500 3500 4500 5000 6500 8000 10000

Lo
ad

 B
al

an
ci

n
g

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 12. Overall improvement – Test 2

0

0.2

0.4

0.6

0.8

1

1.2

1500 2500 3500 4500 5000 6500 8000 10000

O
ve

ra
ll

Im
p

ro
ve

m
e

n
t

Number of Tasks

QoS-driven DSAware Max-Min CM3

AJSE Volume 22, Issue 2, Page 153 - 163 Page 160

performance than the first test and for more tasks according to
Figures 7, 12.

C. Test 3 (Changing Weights to Reduce Makespan)

To improve the situation of makespan and load balancing,
we consider the weight of the criteria as follows and we repeat
the tests on 50 virtual machines.

By the weights changing and increasing the role of

workload and processing power, a virtual machine is selected
in each cycle of scheduling operations which provides less
completion time for the task compared to the first test.
Therefore, a more appropriate mapping is provided in terms of
task completion time, and according to the definition 9, the
makespan becomes more appropriate as shown in Fig. 13.

Due to the increase in the effectiveness of the task length
and the decrease in the effectiveness of the deadline in
determining the priority of tasks, by comparison of Figures 4,
14 is determined that deadline violations increase compared to
the first test. Also, as mentioned in the first test, if the set of
tasks includes greater number of tasks, with the progress of
scheduling stages, the number of candidate virtual machines as
well as the possibility of using elasticity decreases due to the
increase in completion time (workload) of virtual machines.
Therefore, the deadline violations of the method for 6500,
8000, and 10000 tasks, are more than other cases.

The CM3 method still has better performance than the other

methods in terms of total execution cost due to considering the
cost of using virtual machines in scheduling operations.
However, according to the reduction in the weight of 𝑤𝑐 in the
selection of the virtual machine, the total execution cost has
increased compared to the first test and in most cases.

Given the changes in the weight of the criteria, the selected

virtual machine in each mapping provides a less completion
time for the task. So the completion time of the virtual
machines does not deviate much from the average completion
time at the end of the scheduling operation, the load balancing
has been improved compared to the first test by comparison of
Figures 6, 16.

wl = 0.35 wd = 0.33 wu = 0.32

ww = 0.36 wp = 0.34 wc = 0.3

Fig. 13. Makespan – Test 3

0

20

40

60

80

100

120

140

160

180

200

1500 2500 3500 4500 5000 6500 8000 10000

M
ak

e
sp

an
 (

m
s)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 14. Deadline violation – Test 3

0

2000

4000

6000

8000

10000

12000

1500 2500 3500 4500 5000 6500 8000 10000

D
e

ad
lin

e
 V

io
la

ti
o

n

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 15. Total execution cost – Test 3

0

50

100

150

200

250

1500 2500 3500 4500 5000 6500 8000 10000

C
o

st
 (

$
)

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 16. Load balancing – Test 3

0

1

2

3

4

5

6

1500 2500 3500 4500 5000 6500 8000 10000

Lo
ad

 B
al

an
ci

n
g

Number of Tasks

QoS-driven DSAware Max-Min CM3

Fig. 17. Overall improvement – Test 3

0

0.1

0.2

0.3

0.4

0.5

0.6

1500 2500 3500 4500 5000 6500 8000 10000

O
ve

ra
ll

Im
p

ro
ve

m
e

n
t

Number of Tasks

QoS-driven DSAware Max-Min CM3

AJSE Volume 22, Issue 2, Page 153 - 163 Page 161

In this test, the better status of makespan and load balancing

have improved the overall performance of the CM3 method,
especially for 6500, 8000, and 10000 tasks, compared to the
first test and according to Figures 7, 17.

D. Different Applications of the Proposed Method

In the CM3 method, the weights of effective criteria in
prioritizing tasks and selecting virtual machines can be
changed as needed. For example, in the forthcoming tests the
results of the changes of 𝑤𝑢, 𝑤𝑐 will be examined and
evaluated.

Increasing the value of 𝑤𝑢 in Equation 19 will decrease the
completion time of the tasks with higher user level. Fig. 18 has
shown the effect of increasing this weight at the completion
time of the tasks of level 3.

To reduce the total execution cost of the tasks, the weight of

the relevant criterion in the virtual machine selection relation
should be increased. In this test, the weight of different criteria
is determined as follows:

V. CONCLUSION

The results of various tests show that the CM3 method in
most cases, and especially compared to the TS-QoS method
which is a multi-criteria method, has been able to improve the
makespan and load balancing. Although CM3 sometimes has
weaker performance than the single criterion (DSAware)
method, it has acceptable performance in terms of number of
deadline violations. It also works better than other methods in
terms of execution cost in almost all cases. In addition,
depending on the situation and per the desired objective, by
changing the weight of the criteria, the desired result can be
achieved. This factor distinguishes the proposed method from
other methods in addition to considering different effective
criteria.

Although the statement of the proposed method’s

adaptability may be seemed ambitious, the use of artificial
intelligence algorithms to adjust the weight of the criteria does
not take this away from the mind. Therefore, as a future work,
the CM3 method can be adapted based on scheduling
objectives and during scheduling operations. Other
suggestions for future studies are the distribution of the
scheduling unit, determination of the value of parameter C to
achieve the best state of makespan and load balancing, using
the CM3 method in a hybrid cloud environment to further
reduce the total execution cost, generalizing the criteria for
selecting virtual machines, and using the method for
dependent tasks.

REFERENCES
[1] P. Mell and T. Grance, “The NIST definition of cloud

computing,” National Institute of Standards and
Technology, 2011, doi: 10.6028/NIST.SP.800-145.

[2] H. Ji et al., “Adaptive workflow scheduling for diverse
objectives in cloud environments,” Transactions on
Emerging Telecommunications Technologies, Vol.28,
No.2, pp. e2941, 2015, doi: 10.1002/ett.2941.

[3] A.V. Lakra and D.K. Yadav, “Multi-objective tasks
scheduling algorithm for cloud computing throughput
optimization,” Procedia Computer Science, Vol.48, pp.
107-113, 2015, doi: 10.1016/j.procs.2015.04.158.

[4] D. Kaur and T. Sharma, “Scheduling Algorithms in Cloud
Computing,” International Journal of Computer
Applications, Vol.178, No.9, pp. 16-21, 2019, doi:
10.5120/ijca2019918801.

[5] J. Samriya and N. Kumar, “A QoS Aware FTOPSIS-WOA
based task scheduling algorithm with load balancing
technique for the cloud computing environment,” Indian
Journal of Science and Technology, Vol.13, No.35, pp.
3675-3684, 2020, doi: 10.17485/IJST/v13i35.1314.

[6] S. Xue et al., “QET: a QoS-based energy-aware task
scheduling method in cloud environment,” Cluster
Computing, Vol.20, No.4, pp. 3199-3212, 2017, doi:
10.1007/s10586-017-1047-5.

[7] A. Chhabra et al., “QoS-Aware Energy-Efficient Task
Scheduling on HPC Cloud Infrastructures Using Swarm-
Intelligence Meta-Heuristics,” CMC-COMPUTERS

Fig. 18. Influence of user level criterion weight on the

completion time of highest-level tasks

0

5

10

15

20

25

30

A
ve

ra
ge

 C
o

m
p

le
ti

o
n

 T
im

e
 o

f
H

L
Ta

sk
s

(m
s)

User Level Criterion Weight

Average value of 1000, 2000, 3000, 4000, 5000, 6500, 8000 tasks

i = 0, 1, . . , 18 w𝑐 = 0.05 + i × 0.05
w𝑢 = 𝑤𝑑 = 𝑤𝑙 w𝑝 = w𝑤 = 0.475 − 𝑖 × 0.025

Fig. 19. Influence of cost criterion weight to decrease execution

cost

0

10

20

30

40

50

60

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

C
o

st
 (

$
)

Cost Criterion Weight

Average value 1000, 2000, 3000, 4000, 5000, 6500, 8000 tasks

50

51

52

53

54

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

C
o

st
 (

$
)

29

29.5

30

30.5

31

0
.5

5

0
.6

5

0
.7

5

0
.8

5

0
.9

5

26
28
30
32
34
36
38

0
.4

0
.4

5

0
.5

Cost Criterion Cost Criterion Weight

AJSE Volume 22, Issue 2, Page 153 - 163 Page 162

https://doi.org/10.1016/j.procs.2015.04.158

MATERIALS & CONTINUA, Vol.64, No.2, pp. 813-834,
2020, doi: 10.32604/cmc.2020.010934.

[8] S. Mira, “Task Scheduling Balancing User Experience and
Resource Utilization on Cloud,” A Thesis Submitted in
Partial Fulfillment of the Requirements for the Degree of
Master of Science in Software Engineering, Rochester
Institute of Technology, 2019.

[9] R. Khorsand and M. Ramezanpour, “An energy-efficient
task-scheduling algorithm based on a multi-criteria
decision-making method in cloud computing,” International
Journal of Communication Systems, Vol.33, No.9, pp.
e4379, 2020, doi: 10.1002/dac.4379.

[10] G. Muthusamy and S.R. Chandran, “Cluster-based Task
Scheduling Using K-Means Clustering for Load Balancing
in Cloud Datacenters,” Journal of Internet Technology,
Vol.22, No.1, pp. 121-130, 2021.

[11] S.E. Shukri et al., “Enhanced multi-verse optimizer for task
scheduling in cloud computing environments,” Expert
Systems with Applications, Vol.168, pp. 114230, 2020,
doi: 10.1016/j.eswa.2020.114230.

[12] M. Hussain et al., “Energy and Performance-Efficient Task
Scheduling in Heterogeneous Virtualized Cloud
Computing,” Sustainable Computing: Informatics and
Systems, Vol.30, pp. 100517, 2021, doi:
10.1016/j.suscom.2021.100517.

[13] A. Gupta et al., “Load balancing based hyper heuristic
algorithm for cloud task scheduling,” Journal of Ambient
Intelligence and Humanized Computing, 2020, doi:
10.1007/s12652-022-04238-5.

[14] H. Yuan et al., “Revenue and energy cost-optimized
biobjective task scheduling for green cloud data centers,”
IEEE Transactions on Automation Science and
Engineering, pp. 1-14, 2020, doi:
10.1109/TASE.2020.2971512.

[15] A. Thomas et al., “Credit Based Scheduling Algorithm in
Cloud Computing Environment,” Procedia Computer
Science, Vol.46, pp. 913-920, 2015, doi:
10.1016/j.procs.2015.02.162.

[16] O. Elzeki et al., “Overview of scheduling tasks in
distributed computing systems,” International Journal of
Soft Computing and Engineering (IJSCE), Vol.2, No.3, pp.
470-475, 2012.

[17] S. Mohapatra et al., “A Comparative Study of Task
Scheduling Algorithm in Cloud Computing,” (Springer,
edn.), pp. 325-338, 2020, doi: 10.1007/978-981-15-1483-
8_28.

[18] S. Devipriya and C. Ramesh, “Improved max-min heuristic
model for task scheduling in cloud,” (IEEE, edn.), pp. 883-
888, 2013, doi: 10.1109/ICGCE.2013.6823559.

[19] T. Mathew et al., “Study and analysis of various task
scheduling algorithms in the cloud computing
environment,” (IEEE, edn.), pp. 658-664, 2014, doi:
10.1109/ICACCI.2014.6968517.

[20] V. Poonam Chaudhary, “Deadline and Suffrage Aware Task
Scheduling Approach for Cloud Environment,”
International Research Journal of Engineering and
Technology, Vol.4, No.8, pp. 972-977, 2017.

[21] X. Wu et al., “A task scheduling algorithm based on QoS-
driven in cloud computing,” Procedia Computer Science,
Vol.17, pp. 1162-1169, 2013, doi:
10.1016/j.procs.2013.05.148.

[22] R.N. Calheiros et al., “CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation
of resource provisioning algorithms,” Software: Practice
and Experience, Vol.41, No.1, pp. 23-50, 2011, doi:
10.1002/spe.995.

[23] N. Rajak and D. Shukla, “A Systematic Analysis of Task
Scheduling Algorithms in Cloud Computing,” (Springer,
edn.), pp. 39-49, 2020, doi: 10.1007/978-981-15-2071-6_4.

[24] R. Gulbaz, “Task Scheduling Optimization in Cloud
Computing,” A thesis submitted in partial fulfillment for the
degree of Master of Science, Capital University of Science
and Technology, 2020.

[25] R. Chen et al., “A Cloud Task Scheduling Algorithm Based
on Users' Satisfaction,” (IEEE, edn.), pp. 1-5, 2013, doi:
10.1109/ICNDC.2013.11.

[26] H. Han et al., “A Qos Guided task Scheduling Model in
cloud computing environment,” (IEEE, edn.), pp. 72-76,
2013, doi: 10.1109/EIDWT.2013.17.

[27] Y. Fan et al., “Executing Time and Cost-Aware Task
Scheduling in Hybrid Cloud Using a Modified DE
Algorithm,” (Springer, edn.), pp. 74-83, 2015, doi:
10.1007/978-981-10-0356-1_8.

[28] “The LCG Grid log,” Available:
http://www.cs.huji.ac.il/labs/parallel/workload/l_lcg/index.h
tml, 2005.

Ehsan Shojaeian received the B.S.
degree in Computer Engineering from
Razi University, Kermanshah, Iran, and
the M.S. degree in Computer Engineering
from Science and Research University,
Tehran, Iran. Currently, He is a research
fellow in the Department of Computer
Engineering, Islamic Azad University
Science and Research Branch, Tehran,

Iran. His research interests include cloud computing, security
and privacy issues in internet of things devices, and big data
analysis.

Mehran Mohsenzadeh is a faculty
member in the Department of Computer
Engineering, Islamic Azad University
Science and Research Branch, Tehran,
Iran. He received the B.S. degree in
Computer Engineering from Shahid
Beheshti University, Tehran, Iran, and the
M.S. degree and Ph.D. degree in
Computer Engineering from Science and

Research University, Tehran, Iran. He is an associate editor of
the Journal of Advances in Computer Engineering and
Technology. His main research interests include database, big
data, cloud computing, and software engineering and he has
published more than eighty articles (author/coauthor) in
international conferences and journals.

Mohammad Mehdi Sahrapour received
the B.S. degree in Electrical Engineering
from Islamic Azad University, Tehran,
Iran, and the M.S. degree in Business
Administration from Amirkabir
University, Tehran, Iran. He pursued and
successfully completed a second Master's
degree in Project Management from

Monash University, Caulfield East VIC, Australia. His
research interests include digital transformation and the
potential of computing and artificial intelligence in
revolutionizing digital services.

AJSE Volume 22, Issue 2, Page 153 - 163 Page 163

https://doi.org/10.32604/cmc.2020.010934
https://doi.org/10.1016/j.eswa.2020.114230
http://dx.doi.org/10.1016/j.suscom.2021.100517
https://doi.org/10.1007/s12652-022-04238-5
https://doi.org/10.1109/TASE.2020.2971512
https://doi.org/10.1016/j.procs.2015.02.162
https://doi.org/10.1109/ICGCE.2013.6823559
https://doi.org/10.1016/j.procs.2013.05.148
https://doi.org/10.1109/ICNDC.2013.11
https://doi.org/10.1109/EIDWT.2013.17
https://www.researchgate.net/institution/Islamic-Azad-University-Tehran-Science-and-Research-Branch?_tp=eyJjb250ZXh0Ijp7InBhZ2UiOiJfZGlyZWN0In19
https://www.researchgate.net/institution/Islamic-Azad-University-Tehran-Science-and-Research-Branch?_tp=eyJjb250ZXh0Ijp7InBhZ2UiOiJfZGlyZWN0In19

