
Abstract--In this paper, we discussed a new Sumudu transform 

iterative method and successfully applied on linear and nonlinear 

fractional integro-differential equations. The obtained results are 

compatible with those that got by other methods. A comparison 

between our method and other results is given. The fractional 

derivative here described in the Caputo sense. The proposed 

method has the power by reducing the size of calculations and by 

finding the exact solution.  

Index terms--New iterative Sumudu transform method; 

fractional integro-differential equations ; fractional Caputo 

derivative. 

I. INTRODUCTION
Fractional calculus is considered a very important topic for 
many scientists due to the large number of applications in many 
fields such as engineering, physics and chemistry, economy, 
biology and so on; see [1,2,3,4,5]. Fractional integro-
differential equations play an important role in different fields 
such as electromagnetic waves, biomedical engineering, fluid 
mechanics etc; for that  studying fractional integro-differential 
equations has become a focus of interest for many researchers. 
Several methods have been employed efficiently to give best 
and accurate solutions for integro-differential equations such as 
Adomian decomposition method [6,7], Homotopy perturbation 
method [8], Fractional differential transformation method [9], 
Taylor expansion method [10], Legendre wavelet method [11], 
and Laplace variational iteration method [12]. 
In the literature several works were done on the concept of 
integral transform such as Fourier, Laplace, Melin, and Abel. 
Sumudu transform is one of the new integral transformation that 
has been introduced by [13], many properties have been 
presented at [14,15]. Sumudu transform is efficiently applied to 
many fractional partial, differential, and integro-differential 
equations [16-26]. 
The new Sumudu transform iterative method (NSTIM) has 
been successfully applied in many partial and ordinary 
differential equations [27-31]. In this paper, we prove the power 
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of this method by applying it on many fractional integro-
differential equations. 

II. BASIC DEFINITIONS
In this section, some definitions of fractional calculus and 
Sumudu transform properties are presented. 

Definition 1. 
The Riemann-Liouville fractional integral operator 𝐼𝛼of order
𝛼 > 0, of a function 
𝑓 ∈ 𝐶𝜇  , 𝜇 ≥ −1, is defined as

𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫ (𝑡 − 𝜏)𝛼−1𝑓(𝜏)𝑑𝜏

𝑡

0

𝐼0𝑓(𝑡) = 𝑓(𝑡)

Where Γ is the well-known Gamma function. 
Some properties of 𝐼𝛼 are

1. 𝐼𝛼𝐼𝛽𝑓(𝑡) = 𝐼𝛼+𝛽𝑓(𝑡)

2. 𝐼𝛼𝐼𝛽𝑓(𝑡) = 𝐼𝛽𝐼𝛼𝑓(𝑡)

3. 𝐼𝛼𝑡𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑡𝛼+𝛾

4. 𝐼𝛼𝑐 =
𝑐

Γ(𝛼+1)
𝑡𝛼        , c is constant. 

Definition 2.  
Caputo derivative of the function 𝑓(𝑡) is defined as 

𝐷𝛼𝑓(𝑡) = 𝐼𝑛−𝛼𝐷𝑛𝑓(𝑡)

=
1

Γ(𝑛 − 𝛼)
∫ (𝑡 − 𝜏)𝑛−𝛼−1𝑓(𝑛−𝛼)(𝜏)𝑑𝜏 ,

𝑡

0

𝑡 > 0 
Where 𝑛 − 1 < 𝛼 ≤ 𝑛 , 𝑛 ∈ Ν, 𝑓 ∈ 𝐶−1

𝑛

Some properties of Caputo derivative 
1. 𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡)

2. 𝐼𝛼𝐷𝛼𝑓(𝑡) = 𝑓(𝑡) − ∑ 𝑓(𝑘)(0)
𝑡𝑘

𝑘!
𝑛−1
𝑘=0

Definition 3.  
If 𝑓(𝑡) is one of the following set of functions 
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𝐴 = {𝑓(𝑡) ∃𝑀⁄ , 𝜏1, 𝜏2 > 0, |𝑓(𝑡)| < 𝑀𝑒
𝑡

𝜏𝑗 , 𝑡

∈ (−1)𝑗 × [0, ∞), 𝑗 = 1,2} 

then the Sumudu transform of 𝑓(𝑡) is defined as 

𝑆[𝑓(𝑡)] = 𝐹(𝜔) = ∫ 𝑓(𝜔𝑡)𝑒−𝑡𝑑𝑡, 𝜔 ∈ (𝜏1, 𝜏2)
∞

0

 

 

III. THE NEW SUMUDU TRANSFORM ITERATIVE METHOD 
(NSTIM) 

 
     In this section, we present the new Sumudu transform 
iterative method (NSTIM) which is a method that gives a 
solution of a convergent series form. 
 
Consider the following initial value fractional integro-
differential equation 
𝐷𝛼𝑦(𝑡) = 𝑔(𝑡) + ℎ(𝑡)𝑦(𝑡) + ∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏 ,         𝑡 >

𝑡

0

0, 𝑛 − 1 < 𝛼 ≤ 𝑛                                                                     (1)                                           
     
   Subject to the initial conditions 𝑦(𝑚)(0) = 𝑎𝑚  ,  
 m= 0,1, … , 𝑛 − 1 ,𝑛 ∈ Ν  
      
Where 𝐷𝛼  is the Caputo fractional derivative of 𝑦(𝑡) and 
𝑁(𝑦(𝑡)) is a linear or nonlinear continuous function of  𝑦 , 𝑎𝑘′𝑠   
are constants and g, h, and k are given functions. 
Now apply Sumudu transform on both sides of equation (1) 
    
𝑆[𝐷𝛼𝑦(𝑡) = 𝑆[𝑔(𝑡)] + 𝑆[ℎ(𝑡)𝑦(𝑡) + 𝑆[∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏]

𝑡

0
       (2)                                                             

 
Apply Sumudu transform properties on equation (1) we get 
 
     
𝜔−𝛼𝑆[𝑦(𝑡)] − ∑ 𝜔−𝛼+𝑘𝑦(𝑘)(0) = 𝑆[𝑔(𝑡)] +𝑛−1

𝑘=0

𝑆[ℎ(𝑡)𝑦(𝑡)] + 𝑆[∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏]
𝑡

0
                                    (3) 

   
By simplifying equation (3), it will be as 
 
𝑆[𝑦(𝑡)] = ∑ 𝜔𝑘𝑦(𝑘)(0) + 𝜔𝛼𝑆[𝑔(𝑡)] + 𝜔𝛼𝑆[ℎ(𝑡)𝑦(𝑡)] +𝑛−1

𝑘=0

𝜔𝛼 𝑆[∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏]
𝑡

0
                                                     (4)                                                                                                                                                                        

 
Take the inverse Sumudu transform for both sides of equation 
(4), we have 
𝑦(𝑡) = 𝑆−1(∑ 𝜔𝑘𝑦(𝑘)(0)𝑛−1

𝑘=0 ) + 𝑆−1(𝜔𝛼𝑆[𝑔(𝑡)]) +

𝑆−1(𝜔𝛼𝑆[ℎ(𝑡)𝑦(𝑡)])0 + 𝑆−1 (𝜔𝛼𝑆[∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏]
𝑡

0
)           (5)                                                                                                                        

Now assume that 

𝑓(𝑡) = 𝑆−1 (∑ 𝜔𝑘𝑦(𝑘)(0)

𝑛−1

𝑘=0

) + 𝑆−1(𝜔𝛼𝑆[𝑔(𝑡)]) 

𝐿(𝑦(𝑡)) = 𝑆−1(𝜔𝛼𝑆[ℎ(𝑡)𝑦(𝑡)]) +

𝑆−1 (𝜔𝛼𝑆[∫ 𝑘(𝑡, 𝜏)𝑁(𝑦(𝜏))𝑑𝜏]
𝑡

0
)                                           (6)                                             

 
Then the solution will be of the form   
𝑦(𝑡) = 𝑓(𝑡) + 𝐿(𝑦(𝑡))                                                              (7)                                                                                                                 
 

Now to find the solution assume that the solution has the series 
form 
𝑦(𝑡) = ∑ 𝑦𝑖(𝑡)∞

𝑖=0                                                                      (8)                                                                                                                                
 
If the function 𝐿(𝑦(𝑡)) is linear function, then it has the 
property 
𝐿(∑ 𝑦𝑖(𝑡)∞

𝑖=0 ) = ∑ 𝐿(𝑦𝑖(𝑡))∞
𝑖=0                                               (9)                                                                                         

 
The solution will be 
 
𝑦(𝑡) = ∑ 𝑦𝑖(𝑡)∞

𝑖=0 = 𝑓(𝑡) + 𝐿(∑ 𝑦𝑖(𝑡)∞
𝑖=0 ) = 𝑓(𝑡) +

∑ 𝐿(𝑦𝑖(𝑡))∞
𝑖=0                                                                            (10)  

                                                                      
And the iterations are 
 
𝑦0 = 𝑓(𝑡)                                                                               (11)                                                                                                                                            
𝑦1 = 𝐿(𝑦0)                                                                             (12)                                                                                                                                                
𝑦𝑛+1 = 𝐿(𝑦𝑛), 𝑛 ≥ 1                                                             (13)                                                                                                                              
 
But if 𝐿(𝑦(𝑡)) is nonlinear, then it satisfies that 
𝐿(∑ 𝑦𝑖(𝑡)∞

𝑖=0 ) = 𝐿(𝑦0) + ∑ (𝐿(∑ 𝑦𝑗
𝑖
𝑗=0 ) − 𝐿(∑ 𝑦𝑗

𝑖−1
𝑗=0 ))∞

𝑖=0            (14) 
                                        
then the solution is 
 
𝑦(𝑡) = ∑ 𝑦𝑖(𝑡)∞

𝑖=0 = 𝑓(𝑡) + 𝐿(∑ 𝑦𝑖(𝑡)∞
𝑖=0 ) = 𝑓(𝑡) + 𝐿(𝑦0) +

∑ (𝐿(∑ 𝑦𝑗
𝑖
𝑗=0 ) − 𝐿(∑ 𝑦𝑗

𝑖−1
𝑗=0 ))∞

𝑖=0                                            (15)  
                                                                                                                      
And the iterations will be 
 
𝑦0 = 𝑓(𝑡)                                                                             (16)                                                                                                                                                    
𝑦1 = 𝐿(𝑦0)                                                                              (17)                                                                                                                                                   
𝑦𝑛+1 = 𝐿(∑ 𝑦𝑖(𝑡)𝑛

𝑖=0 ) − 𝐿(∑ 𝑦𝑖(𝑡)𝑛−1
𝑖=0 ), 𝑛 ≥ 1                     (18)  

                                                                                      
Notice that in equation (1) if the function 𝑔(𝑡) is given as sum 
of many functions  
𝑔(𝑡) = 𝑔1(𝑡) + 𝑔2(𝑡) + ⋯, then we can separate this function 
such as 
𝑔1(𝑡) = 𝑓(𝑡) and add the other functions 𝑔2(𝑡) + 𝑔3(𝑡)+. ..   to  
𝐿(𝑦(𝑡)) 
 

IV. NUMERICAL APPLICATIONS 
Now we apply the new Sumudu transform iterative method 
(NSTIM) on many linear and nonlinear integro-differential 
equations that have been solved in many other methods to show 
the accuracy of our method. 
 
Example 1: 
Consider the following linear Fredholm fractional integro-
differential equation  
 

{
𝐷

1

2𝑦(𝑡) =
1

√𝜋
(

8

3
𝑡

3

2 − 2𝑡
1

2) +
𝑡

12
+ ∫ 𝑡𝜏𝑦(𝜏)𝑑𝜏, 0 ≤ 𝑡, 𝜏 ≥ 1

1

0

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑦(0) = 0
        (19)                                             

                                                  
It was proved that the exact solution is (𝑡) = 𝑡2 − 𝑡 , see [32]. 
 
Now apply Sumudu transform for both sides of equation (19) 
and use Sumudu transform fractional derivative, we get 
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𝜔−

1

2𝑆[𝑦] − 𝜔−
1

2𝑦(0) = 𝑆 [
1

√𝜋
(

8

3
𝑡

3

2 − 2𝑡
1

2)] + 𝑆 [
𝑡

12
+

∫ 𝑡𝜏𝑦(𝜏)𝑑𝜏
1

0
]                                                                        (20)  

And by using initial condition it will be equivalent to 
𝑆[𝑦] = 𝜔

1

2𝑆 [
1

√𝜋
(

8

3
𝑡

3

2 − 2𝑡
1

2)] + 𝜔
1

2𝑆 [
𝑡

12
+ ∫ 𝑡𝜏𝑦(𝜏)𝑑𝜏

1

0
]            (21)                                                                                                        

 
Use inverse Sumudu transform, we obtain 
𝑦(𝑡) = 𝑆−1 (𝜔

1

2𝑆 [
1

√𝜋
(

8

3
𝑡

3

2 − 2𝑡
1

2)]) + 𝑆−1 (𝜔
1

2𝑆 [
𝑡

12
+

∫ 𝑡𝜏𝑦(𝜏)𝑑𝜏
1

0
])                                                                       (22) 

 
We need to use some properties of Gamma function such as 
 
Γ(𝑧 + 1) = 𝑧Γ(𝑧), 𝑧 > 0, 𝑎𝑛𝑑 Γ (

1

2
) = √𝜋                           (23)  

                                                                      
Use Sumudu transform properties in Table 1 and some 
properties of Gamma function in (23), equation (19) will be 
equivalent to 

𝑦(𝑡) = 𝑆−1(2𝜔2 − 𝜔) + 𝑆−1 (
𝜔

3
2

12
+ 𝜔

1

2𝑆 [
𝑡

12
+ ∫ 𝑡𝜏𝑦(𝜏)𝑑𝜏

𝑡

0
])     (24)                                                                       

Now according to the NSTIM  
𝑦0 = 𝑆−1(2𝜔2 − 𝜔) = 𝑡2 − 𝑡  
and  

𝑦𝑛+1 = 𝑆−1 (
𝜔

3
2

12
+ 𝜔

1

2𝑆 [
𝑡

12
+ ∫ 𝑡𝜏𝑦𝑛(𝜏)𝑑𝑑𝜏

1

0
]) , 𝑛 ≥ 0                (25)                                                   

Hence, we have  

𝑦1 = 𝑆−1 (
𝜔

3
2

12
+ 𝜔

1

2𝑆 [𝑡 ∫ 𝜏3 − 𝜏2𝑑𝜏
1

0
]) = 𝑆−1 (

𝜔
3
2

12
+ 𝜔

1

2𝑆 [
−1

12
𝑡]) =

𝑆−1 (
𝜔

3
2

12
−

𝜔
1
2

12
) = 0                                                                          (26) 

 
And then using equation (13) the other iterations will be zeros,  
𝑦𝑛 = 0, 𝑛 ≥ 1. 
Then the exact solution of equation (19) is 𝑦(𝑡) = ∑ 𝑦𝑖(𝑡) =∞

𝑖=0

𝑡2 − 𝑡  which is compatible with the exact solution that was 
found by other method in [32]. 
 
Example 2: 

Consider the following nonlinear Volterra fractional 
integro-differential equation  
𝐷

6

5𝑦(𝑡) =
5

2Γ(
4

5
)

𝑡
4

5 −
1

252
𝑡9 + ∫

(𝑡 − 𝜏)2𝑦3(𝜏)𝑑𝜏,   
0 ≤ 𝑡 < 1

𝑡

0
              (27)                                   

And subject to initial conditions 𝑦(0) = 𝑦′(0) = 0  
 
The exact solution was proved using other methods in [33] as y 
(𝑡) = 𝑡2 . 
 
The same solution was found using NSTIM 
By taking the Sumudu transform for both sides of equation (33) 
we have 
𝜔−

6

5𝑆[𝑦] − 𝜔−
6

5𝑦(0) − 𝜔−
1

5𝑦′(0) =
5

2Γ(
4

5
)

𝜔
4

5Γ (
9

5
) −

𝜔9Γ(10)

252
+

𝜔𝑆[𝑡2]𝑆[𝑦3]  
By using initial conditions and taking Sumudu inverse for the 
equation we obtain 
 

𝑦(𝑡) = 𝑆−1 (𝜔
6

5
5

2Γ(
4

5
)

𝜔
4

5Γ (
9

5
)) − 𝑆−1 (𝜔

6

5
𝜔9Γ(10)

252
) +

𝑆−1 (𝜔
6

5𝜔𝑆[𝑡2]𝑆[𝑦3])           
Using the series form for (𝑡) = ∑ 𝑦𝑖(𝑡)∞

𝑖=0  , the iterations will 
be  

𝑦0 = 𝑆−1 (𝜔
6

5
5

2Γ(
4

5
)

𝜔
4

5Γ (
9

5
)) = 𝑆−1(2𝜔2) = 𝑡2  

And 
𝑦𝑛+1 = −𝑆−1 (𝜔

6

5
𝜔9Γ(10)

252
) + 𝑆−1 (𝜔

6

5𝜔𝑆[𝑡2]𝑆[𝑦𝑛
3]) , 𝑛 ≥ 1  

Then  
 
𝑦1 = −𝑆−1 (𝜔

51

5
Γ(10)

252
) + 𝑆−1 (𝜔

11

5 𝑆[𝑡2]𝑆[𝑦0
3])  

     = −𝑆−1 (𝜔
51

5
Γ(10)

252
) + 𝑆−1 (𝜔

11

5 𝜔2Γ(3)𝜔6Γ(7))    
 
By using properties of the Gamma function Γ(𝑧 + 1) = 𝑧Γ(𝑧) 
gives us  𝑦1 = 0  
According to equations (1) and (6) the function 𝐿(𝑦(𝑡)) is not 
linear  
Hence  𝑦2 = 𝐿(𝑦0 + 𝑦1) − 𝐿(𝑦0) = 0 
Then other iterations of y are zeros  𝑦𝑛 = 0, 𝑛 ≥ 1 
Finally, the solution of equation (27) is  𝑦(𝑡) = 𝑡2 is compatible 
with the same solution found in [33]. 
 
Example 3: 
We finally consider the following linear Volterra fractional 
integro-differential equation that was studied in [9,12]. 
 
𝐷𝛼𝑦(𝑡) = 𝑡 + (3 + 𝑡)𝑒𝑡 + 𝑦 − ∫

𝑦(𝜏)𝑑𝜏,   0 < 𝑡 < 1,
                 3 < 𝛼 ≤ 4

𝑡

0
       (28)                                                                               

 
with the initial conditions  𝑦(0) = 1, 𝑦′(0) = 1, 𝑦′′(0) =
2, 𝑦′′′(0) = 3 
 
Now apply Sumudu transform for both sides of equation (28) 
and use Sumudu property of fractional derivative, we get 
𝜔−𝛼(𝑆[𝑦] − 𝑦(0) − 𝜔𝑦′(0) − 𝜔2𝑦′′(0) − 𝜔3𝑦′′′(0)) = 𝑆 [𝑡 + (3 +

𝑡)𝑒𝑡 + 𝑦 − ∫ 𝑦(𝜏)𝑑𝜏
𝑡

0
]    

By using Sumudu properties, it will be equivalent to  
𝑦 = 𝑆−1(1 + 𝜔 + 2𝜔2 + 3𝜔3)

+ 𝑆−1 (𝜔𝛼𝑆 [𝑡 + (3 + 𝑡)𝑒𝑡 + 𝑦

− ∫ 𝑦(𝜏)𝑑𝜏

𝑡

0

]) 

Using NSTIM, we get the first iteration to be  
𝑦0 = 𝑆−1(1 + 𝜔 + 2𝜔2 + 3𝜔3) = 1 + 𝑡 + 𝑡2 +

𝑡3

2
  

Moreover, the next iterations are  
𝑦𝑛+1 = 𝑆−1(𝜔𝛼𝑆[𝑡 + (3 + 𝑡)𝑒𝑡 + 𝑦𝑛 + ∫ 𝑦

𝑛
(𝜏)𝑑𝜏

𝑡

0
]), 𝑛 ≥ 0  

Now take a series approximation of exponential to be 
 𝑒𝑡 ≈ 1 + 𝑡 +

𝑡2

2!
+

𝑡3

3!
+

𝑡4

4!
 

 The second iteration will be 
𝑦1 = 𝑆−1(4𝜔𝛼 + 5𝜔𝛼+1 + 6𝜔𝛼+2 + 7𝜔𝛼+3 + 𝜔𝛼+4)  
=

4𝑡𝛼

Γ(𝛼+1)
+

5𝑡𝛼+1

Γ(𝛼+2)
+

6𝑡𝛼+2

Γ(𝛼+3)
+

7𝑡𝛼+3

Γ(𝛼+4)
+

𝑡𝛼+4

Γ(𝛼+5)
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The solution with the first two iterations is 
𝑦(𝑡) = 𝑦0 + 𝑦1 = 1 + 𝑡 + 𝑡2 +

𝑡3

2
+

4𝑡𝛼

Γ(𝛼+1)
+

5𝑡𝛼+1

Γ(𝛼+2)
+

6𝑡𝛼+2

Γ(𝛼+3)
+

7𝑡𝛼+3

Γ(𝛼+4)
+

𝑡𝛼+4

Γ(𝛼+5)
  

The exact solution for equation (28) is 𝑦 = 1 + 𝑡𝑒𝑡 for  𝛼 = 4. 
The numerical results in Table 1 show similar agreement with 
the results in [12]. 
These results were found using Mathematica package. 
 
Table 1. Numerical results of Example 6 for 𝛼 = 4. 

t exact Appr Sol 
𝛼 = 4  

Abs.Error Rela. 
Error 

0. 1. 1. 0. 0. 
 0.1 1.110517

0918 
1.110517
0918 

1.00342 
×10−12 

9.03561× 
10−13 

0.2 1.244280
5516 

1.244280
5514 

2.599×10−

10 
2.08876× 
10−10 

0.3 1.404957
6423 

1.404957
6355 

6.74267×
10−9 

4.7992×1
0−9 

0.4 1.596729
8791 

1.596729
8109 

6.82064×
10−8 

4.27163×
10−8 

0.5 1.824360
6354 

1.824360
2235 

4.11886×
10−7 

2.2577×1
0−7 

0.6 2.093271
2802 

2.093269
4851 

1.79509×
10−6 

8.57553×
10−7 

0.7 2.409626
8952 

2.409620
6477 

6.24752×
10−6 

2.59273×
10−6 

0.8 2.780432
7428 

2.780414
2978 

1.84449×
10−5 

6.63384×
10−6 

0.9 3.213642
8 

3.213594
7695 

4.80306×
10−5 

1.49458×
10−5 

1. 3.718281
8285 

3.718168
5406 

1.13288×
10−4 

3.04678×
10−5 

 

V. CONCLUSIONS 
  In this paper, we successfully applied NSTIM to linear and 
nonlinear Volterra and Fredholm integro-differential equations. 
We compared our results with other numerical methods and got 
very good conclusions by finding an exact solution for linear 
integro-differential equations and good accurate solution for 
nonlinear integro-differential equation with quickly 
calculations. These comparisons show that our method is 
powerful and reliable. 
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