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Adaptation of Sumudu Transform Iterative
Method for Solving Fractional Integro-
Differential Equations

Eman Abuteen

Abstract--In this paper, we discussed a new Sumudu transform
iterative method and successfully applied on linear and nonlinear
fractional integro-differential equations. The obtained results are
compatible with those that got by other methods. A comparison
between our method and other results is given. The fractional
derivative here described in the Caputo sense. The proposed
method has the power by reducing the size of calculations and by
finding the exact solution.

Index terms--New iterative Sumudu transform method;
fractional integro-differential equations ; fractional Caputo
derivative.

I. INTRODUCTION

Fractional calculus is considered a very important topic for
many scientists due to the large number of applications in many
fields such as engineering, physics and chemistry, economy,
biology and so on; see [1,2,3,4,5]. Fractional integro-
differential equations play an important role in different fields
such as electromagnetic waves, biomedical engineering, fluid
mechanics etc; for that studying fractional integro-differential
equations has become a focus of interest for many researchers.
Several methods have been employed efficiently to give best
and accurate solutions for integro-differential equations such as
Adomian decomposition method [6,7], Homotopy perturbation
method [8], Fractional differential transformation method [9],
Taylor expansion method [10], Legendre wavelet method [11],
and Laplace variational iteration method [12].

In the literature several works were done on the concept of
integral transform such as Fourier, Laplace, Melin, and Abel.
Sumudu transform is one of the new integral transformation that
has been introduced by [13], many properties have been
presented at [14,15]. Sumudu transform is efficiently applied to
many fractional partial, differential, and integro-differential
equations [16-26].

The new Sumudu transform iterative method (NSTIM) has
been successfully applied in many partial and ordinary
differential equations [27-31]. In this paper, we prove the power
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of this method by applying it on many fractional integro-
differential equations.

II. BASIC DEFINITIONS
In this section, some definitions of fractional calculus and
Sumudu transform properties are presented.

Definition 1.

The Riemann-Liouville fractional integral operator [%of order
a > 0, of a function

f €C,,u=—1,is defined as

1t B
10 = s fo (t - D) f (D)dr
P = £(0)

Where T is the well-known Gamma function.
Some properties of [* are

1. I%IBfF(t) = 1B £ (1)
2. I%IBF(t) = IPI%f (1)

3. I%tY = L) paty
I(a+y+1)
a,__ € a :
4. I%c = @t , ¢ is constant.
Definition 2.

Caputo derivative of the function f(t) is defined as
Df(t) = I""“D"f(¢)

1 t
— _ \n-a-1r(n-a)
= T=D fo (t - e f D (g,

t>0
Wheren—1<a<n, neN,f eCl

Some properties of Caputo derivative

1. DUI*f(t) = f(t) .
2. I%DEf(t) = f(t) — 2‘;3f(k)(0)%

Definition 3.
If f(¢t) is one of the following set of functions
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A= {f(t)/HM.rl,r2 >0,|f(0)] < MeY, ¢t

€ (-1)) x[0,00),j = 1,2}
then the Sumudu transform of f(t) is defined as

SIFO)] = F(w) = f fledt, € (13,15)
0

III. THE NEW SUMUDU TRANSFORM ITERATIVE METHOD
(NSTIM)

In this section, we present the new Sumudu transform
iterative method (NSTIM) which is a method that gives a
solution of a convergent series form.

Consider the following initial value fractional integro-
differential equation

Dy(t) = g(t) + h(O)y(®) + [ k(t, ON(y(D))dTr,  t>
0O0n—-1<a<n (1)

Subject to the initial conditions y™ (0) = a,,, ,
m=0,1,..,.n—1n€eN

Where D% is the Caputo fractional derivative of y(t) and
N(y(t)) is a linear or nonlinear continuous function of y , a;'s
are constants and g, h, and k are given functions.

Now apply Sumudu transform on both sides of equation (1)

S[D%(t) = S[g(O)] + S[R(E)y (&) + S[J, k(E, DN (y(®))dr]  (2)

Apply Sumudu transform properties on equation (1) we get

w™S[y()] - Tpzd 0~y ®(0) = S[g()] +
S[R®)y(©)] + S[J, k(t, DN (y(2))dr] (3)

By simplifying equation (3), it will be as

Sy®] = Zpzs 0k y®(0) + w*S[g(®)] + w SR Y(®)] +
w“S[fOtk(t, N(y(1))dr] “

Take the inverse Sumudu transform for both sides of equation
(4), we have

y(©) = ST (R 0 y® () + 57w S[g(OD +

ST @ S[AMYONO0 + 57 (wS[f, k(t, IN(y(@)dr]) ()

Now assume that
n-1

f©) =5 (Z wky<’<>(0)> +571 @ S[gO)
k=0

Ly(®) = ST (*S[R®)y(®)]) +
st (w"‘S[fotk(t, T)N(y(r))dr]) (6)

Then the solution will be of the form

y() = f(@) + Ly(t) (7
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Now to find the solution assume that the solution has the series
form

y() = XiZoyi (D) )

If the function L(y(t)) is linear function, then it has the
property

LZiZoyi (1)) = XiZo L(y: (D) ©)

The solution will be

y(@) = EiZoyi(®) = f(&) + LEZoy:(1) = f(8) +

LiZo L) (10)
And the iterations are

Yo = f(t) Y
y1=L(o) (12)
Ynar = L), n2 1 (13)
But if L(y(t)) is nonlinear, then it satisfies that

LEZoyi(0) = LOo) + 220 (L(Zinoy) —LEZDY))  (14)

then the solution is

y(©) = XZoyi(8) = f(8) + LZ0 y:i(0) = fF(8) + L(yo) +

20 (Lo ) — L(Zi2hy)) (15)
And the iterations will be

Yo =f(t) (16)
Y1 =L(o) (17)
Y1 = Lo y: (1)) — L( ?;01}’1‘(0)' n=1 (18)

Notice that in equation (1) if the function g(t) is given as sum
of many functions

g@) = g,(t) + g,(t) + -+, then we can separate this function
such as

91 (t) = f(t) and add the other functions g, (t) + g;(t)+... to
L(y(®))

IV. NUMERICAL APPLICATIONS
Now we apply the new Sumudu transform iterative method
(NSTIM) on many linear and nonlinear integro-differential
equations that have been solved in many other methods to show
the accuracy of our method.

Example 1:
Consider the following linear Fredholm fractional integro-
differential equation

1 1 (83 L t 1
Dzy(t) = \/—E(gtz - 2t2) +o+ Jy tty(@dr, 0<t,t>1

subject to the initial condition y(0) = 0

(19)

It was proved that the exact solution is (t) = t? — t , see [32].

Now apply Sumudu transform for both sides of equation (19)
and use Sumudu transform fractional derivative, we get

Page 148



w3S[y] — w2y (0) = S [\/I—E (g tz — Zt%)] +S [% +

1
N try(r)d'[] (20)
And by using initial condition it will be equivalent to
Sly] = wzS [\/% (2 tz — ZtE)] + wz§ [é + fol t‘ry(‘r)d‘r] (21)
Use inverse Sumudu transform, we obtain

1 3 1 1

y(t) = 571 (aﬁS [\/1_5 (gﬁ - 25)]) +571 (aﬁS [ﬁ +

1
Js t‘ry(‘r)d‘r]) (22)

We need to use some properties of Gamma function such as

I'(z+1) =2zI(2),z>0,and T (%) =+ (23)
Use Sumudu transform properties in Table 1 and some
properties of Gamma function in (23), equation (19) will be
equivalent to

y(t) =S1QRw? —w) + 571 ( + wz S[ +f try(r)dr]) 24)
Now according to the NSTIM

Yo =S1Q2w? —w) =t? -t
and

3 1
Ynpr =S71 (T—; + w2S§ [i + f01 t‘ryn(‘r)ddTD, n=0
Hence, we have

3 1
y1 =871 <(f—22+ wzS [tf01T3 - TszD =Ss1(=

3 1
—1fw2_wz)
S <1z 1z>_0

And then using equation (13) the other iterations will be zeros,
Vo, =0,n=>1.

Then the exact solution of equation (19) is y(t) = X2, v;(t) =
t? —t which is compatible with the exact solution that was
found by other method in [32].

Example 2:
Consider the following nonlinear Volterra fractional
integro-differential equation
: __5 A1, t(t—0)?*y3}(0)dr,
Dsy(t)—zr(g)t Ut 0<t<l
y'(0)=0

@27

And subject to initial conditions y(0) =

The exact solution was proved using other methods in [33] as y

(t) =t2.

The same solution was found using NSTIM
By taking the Sumudu transform for both sides of equation (33)
we have

w‘gS[y]—w'gy(O) w Sy '(0) = ()wsF()
wS[t?]S[y?]

By using initial conditions and taking Sumudu inverse for the
equation we obtain

w°T(10)
252
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_o-1f & s -1, S2w’r10)

y©) =5 (wszr( )wsr‘(s) S (ws 252 )+
6

s-1 (wst[tZ]S[y ])

Using the series form for (t) =

be

6
S 5
=S ws =4
Yo 2r(2

( )a)%l" (g)) = S12w?) = t?

20Y;(t) , the iterations will

And
6 9 6
— _c-1(,z@ rao -1(,,2 2 3
Vps1 = —S (ws 0 )+S (wst[t ]S[yn]), n=1
Then
_ 51 1(10) 1
y, =-=§1 (w 55 ) +S- (w 5 S[tz]S[yS])

22T(10)

=—51 (w s ) +5- (w%wzF(S)wﬁF(ﬂ)

By using properties of the Gamma function I'(z + 1) = zI'(2)
givesus y; =0

According to equations (1) and (6) the function L(y(t)) is not
linear

Hence y, = L(yo +¥1) —L(yo) =0

Then other iterations of y are zeros y, = 0,n>1

Finally, the solution of equation (27) is y(t) = t? is compatible
with the same solution found in [33].

Example 3:
We finally consider the following linear Volterra fractional
integro-differential equation that was studied in [9,12].

ty()dr, 0<t<1,
3<a<4

y(0) =1,5'(0) = 1,y"(0) =

Dey(t) =t+ (3 +t)et +y— f (28)

with the initial conditions
z’yIH (0) = 3

Now apply Sumudu transform for both sides of equation (28)
and use Sumudu property of fractional derivative, we get

W™ (S[y] = y(0) — 0y’ (0) — w?y"(0) — w®y™ (0)) = S [t + (3 +
et +y— foty(r)dr]

By using Sumudu properties, it will be equivalent to
y=5"114+w+2w? + 30?)

+S571 (w“S [t +@B+tef+y

foos]

Using NSTIM, we get the first iteration to be

Vo =S11+w+2w?+3w3) = 1+t+t2+§

Moreover, the next iterations are

Ynsr =S7HwS[t + B+ et +y, + [1y,@dr]), n=0

Now take a series approximation of exponential to be
~1+t + e + -+ ﬁ

The second 1terat10n W111 be
y1 = ST Aw® + 5w*t ! + 6w*? + 7w + wt?)

4ta 5ta+1 6t(1+2 7ta+3 ta+4

T I(atl) @ T(a+2)

I'(a+3) I'(a+4) I'(a+5)
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The solution with the first two iterations is

B _ 2 f 4ta 5ta+1
YO =yo+yr =T+t + 2+ 5+t
orat2 7¢@+3 pata
I'(a+3) I'(a+4) I'(a+5)

The exact solution for equation (28)is y = 1 + te® for a = 4.
The numerical results in Table 1 show similar agreement with
the results in [12].

These results were found using Mathematica package.

Table 1. Numerical results of Example 6 for a = 4.

t exact Appr Sol | Abs.Error | Rela.
a=4 Error

0. 1. 1. 0. 0.

0.1 | 1.110517 | 1.110517 | 1.00342 9.03561x
0918 0918 x10712 10713

0.2 1.244280 | 1.244280 | 2.599x10™ | 2.08876x
5516 5514 10 10710

0.3 1.404957 | 1.404957 | 6.74267x | 4.7992x1
6423 6355 107 0’

0.4 1.596729 | 1.596729 | 6.82064x | 4.27163x
8791 8109 10°% 1078

0.5 1.824360 | 1.824360 | 4.11886x | 2.2577x1
6354 2235 107 07’

0.6 2.093271 | 2.093269 | 1.79509x | 8.57553x
2802 4851 10°° 107

0.7 2.409626 | 2.409620 | 6.24752x | 2.59273x
8952 6477 10°° 10°°

0.8 2.780432 | 2.780414 | 1.84449x | 6.63384x
7428 2978 1073 1076

0.9 3.213642 | 3.213594 | 4.80306x | 1.49458x
8 7695 1073 1075

1. 3.718281 | 3.718168 | 1.13288x | 3.04678x
8285 5406 10~ 1075

V. CONCLUSIONS

In this paper, we successfully applied NSTIM to linear and
nonlinear Volterra and Fredholm integro-differential equations.
We compared our results with other numerical methods and got
very good conclusions by finding an exact solution for linear
integro-differential equations and good accurate solution for
nonlinear  integro-differential equation with  quickly
calculations. These comparisons show that our method is
powerful and reliable.
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