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Abstract—Detection and classification of PQ (Power Quality) 

disturbances in distribution/transmission systems are very 

important for protection of electricity network. Most of the 

disturbances of power network are non-stationary and 

momentary in nature, hence it requires advanced tools and 

techniques for the analysis and classification of PQ disturbances. 

This paper presents the detection and classification of PQ events 

or disturbances employing Stockwell-Transformation, known as 

S-Transformation, and Mahalanobis Distance (MD) based 

approach. The proposed method exploits only four features 

extracted through S-transformation of the voltage signal; then, 

using these four features, classification is conducted by MD based 

classifier. In this work, classification of several PQ disturbances, 

such as, voltage sags, swells, harmonics, notch, flicker, transient 

oscillation, momentary interruption, etc., are considered. The 

simulation results demonstrate that the proposed method is very 

effective and accurate in detecting and classifying PQ events. 

Validation of the proposed approach has also been conducted 

using real signal recorded in IEEE 1159.2 database. Moreover, 

comparative classification performance of MD based classifier 

with MED (minimum Euclidean distance) and LVQ (learning 

vector quantization) reveals the superiority of the proposed 

approach.  

Keywords—power quality events; classification; feature 

extraction; S-transform; Mahalanobis distance based classifier. 

I.  INTRODUCTION 

The quality of electric power due to the disturbances in 
power system has become a foremost issue among the electric 
power suppliers and customers. For refining the PQ (power 
quality), continuous monitoring of power is needed which is 
being delivered at customer’s sites. Therefore, detection of PQ 
disturbances, and proper classification of Power Quality 
Disturbances is most desirable. The equipment, which are being 

used in electrical utilities, are sensitive to Power Quality. 
Moreover, this equipment contains power electronic 
components, which are also sensitive to power disturbances. 
Hence, any type of disturbance occurs in the utility side, it 
affects the voltage, current or frequency of the power signal 
which in turn affects the customer’s side and the issue is known 
as power quality problem. Therefore, electrical utilities and 
customers both are aware of the power quality disturbances. 
Disturbances and/or faults in power transmission or distribution 
lines are normally considered as the primary reason to occur PQ 
events, such as, momentary interruption, flicker, notch, voltage 
sag/swell with and without harmonics, harmonic distortion, and 
transients, etc. Faults in an electricity network may create 
voltage sag or interruption, whereas disconnection of large load 
or capacitor bank energization may result in voltage swell [1]. 
In contrast, harmonic distortion and notching in the voltage and 
current may occur due to the usage of nonlinear power 
electronic loads, such as, electronic inverters or rectifiers. 
Flickers are usually found due to the use of arc furnaces. 
Transients are frequently found in electricity networks and the 
influential factors of transients are transformer energization, 
heavy load or capacitor switching, etc. The PQ events can have 
adverse effect on the electrical equipment, e.g., malfunctions, 
short lifetime, and failure of equipment may occur. Therefore, 
at the first stage, detection and accurate classification of PQ 
events are required, so that appropriate mitigation and fault 
clearance technique can be deployed. Hence, in this paper, 
identification (detection and classification) of 10 PQ events 
(including the normal voltage waveforms), which are 
frequently found in power system, is conducted employing S-
transformation (Stockwell Transformation and Mahalanobis 
Distance (MD) based classifier. 

II. PQ EVENTS AND THEIR MATHEMATICAL 

REPRESENTATION 

Disturbances or faults in electricity network may lead to 
malfunction or even failures of different sensitive equipment. 
To quantify and characterize the severity of disturbances or 
faults, firstly, different types of PQ events, such as, sags, swells, 
harmonics and transients, are needed to be detected instantly 
and classified accurately. In this Section, the definition and the 
causes of some important PQ disturbances are discussed along 
with their mathematical expressions in Table I. 

1) Voltage Sag: Voltage sag indicates the reduction of rms 
voltage or current to a level of 0.1 to 0.9 pu for a typical duration 
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of 0.5 cycle to 1 minute. Usually, voltage sags are initiated by 
rapid increases in loads, such as, electrical short circuits or 
faults, starting of induction motors, or they may be initiated by 
sudden rises in source impedance, typically occurred by a loose 
connection. 

2) Voltage Swell: Voltage swell is found due to the increase in 
rms voltage or current resulting in 1.1 to 1.8 pu for a typical 
duration of 0.5 cycle to 1 minute. Normally, voltage swells are 
initiated by a rapid reduction of load in a circuit which is poorly 
regulated, although they may also be triggered by a broken or 
loose neutral wire connection. 
 
3) Voltage Transient: According to IEEE 1159.2 standard, 
voltage transient is defined by the fluctuation of voltage which 
lies in the range of 0-4 pu for a duration of 0.3-50 ms [1]. 
 
4) Harmonics: Harmonics of voltage or current signals are 
sinusoidal in nature and they contain the frequencies which are 
integer multiples of the fundamental frequency of the designed 
system. An ideal (pure) sinusoidal waveform is produced by an 
ideal AC alternator, which is designed with stator and field 
winding operating in a uniformly distributed magnetic field. 
However, in practice, uniformly distributed magnetic field is 
usually not found; hence, distortion of voltage waveforms are 
created and consequently, the instantaneous voltage waveforms 
deviate from the pure (ideal) sinusoidal wave. Since there is a 
deviation from pure sinusoidal wave and the deviation occurs 
while maintaining the periodicity of sinusoidal wave pattern, 
therefore, by definition, the voltage distortion yields harmonics 
[2]. 

 
5) Interruption: Interruption occurs when the voltage or load 
current reduces and reaches to a level of 0.1 pu or less for a 
duration of less than 1 min. Typically, duration of interruption 
are measured and recorded as an important parameter since the 
voltage level remains less than 10% of nominal voltage during 
interruption. 
 
6) Flicker: They are cyclical variations in the voltage rms values 
or a series of random voltage changes, whose magnitude does 
not normally exceed voltage ranges of 0.9 p.u. to 1.1 p.u. A 
common phenomenon of voltage fluctuations is the voltage 
flicker. Loads, which can exhibit continuous, rapid variations 
in the load current magnitude, can cause voltage fluctuations or 
flickers. The present industry practice is to characterize the 
severity of a voltage flicker with respect to the sensitivity of the 
human visual perception. Typically, magnitudes as low as 0.5% 
can result in a perceptible lamp flicker. Arc furnace and welders 
are the most common causes of voltage fluctuations in utility 
transmission and distribution systems. Other sources of voltage 
fluctuation include lumber mills, draglines, and rock crushing 
machines. Voltage fluctuations can be considered as repetitive 
random voltage sags and swells. Therefore, voltage fluctuations 
have propagation characteristics similar to those of sags. They 
can be assessed using steady-state power system models. A 
strong supply system can greatly reduce severity of voltage 
fluctuation. Voltage fluctuations can cause incandescent and 
fluorescent lights to blink rapidly. It can also cause sensitive 
equipment to malfunction. Static VAR system can mitigate the 
flicker effects [3]. As the annoyance created by flicker is a 

function of both the intensity of perception and the duration of 
exposure, according to IEC the severity of the disturbance is 
described by two parameters: the short-term severity (Pst) and 
the long term severity (Plt). Pst is measured over a period of ten 
minutes whereas the long term severity (Plt) is calculated from 
a sequence of 12 Pst values over a two hour interval. 
 
7) Notching: It is a periodic voltage disturbance caused by the 
normal operation of power electronics devices when current is 
commutated from one phase to another. Notching can be 
characterized through the harmonic spectrum of the affected 
voltage. Although notching is a special case of voltage 
harmonics, it is generally treated as an independent disturbance. 
The frequency components associated with notching can be 
quite high and may not be readily measured with equipment 
normally used for harmonic analysis. It is defined as unwanted 
electrical signals with broadband spectral content lower than 
200 kHz, superimposed upon the power system voltage or 
current in phase conductors, or found in neutral conductors or 
signal lines. Power electronic devices can cause noise in power 
systems, control circuits, and arcing equipment. Improper 
grounding that fails to conduct noise away from the power 
system often exacerbates noise problems. Basically, noise 
consists of any unwanted distortion of the power signal that 
cannot be classified as harmonic distortion or a transient. Noise 
disturbs electronic devices such as microcomputers and 
programmable controllers [4].     
 
Table I exhibits the mathematical representation of 10 PQ 
events, which are voltage sag, swell, harmonic, sag with 
harmonic, swell with harmonic, notch, flicker, interruption, 
transients along with normal pure sinusoid waveform. In Table 
I, t1 is the PQ event inception time and t2 is the event ending 
time, µ (t) is the unit step function represented by (1). 
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III. PROPOSED APPROACH FOR DETECTION AND 

CLASSIFICATION OF PQ EVENTS 

Wavelet Transform (WT) exhibits its notable capabilities 
for detection and localization of the disturbances [5]-[6]. 
However, its capabilities are often significantly degraded in real 
practice under noisy environment. On the other hand, S-
Transform (ST), introduced by R. G. Stockwell in 1996, has the 
ability to detect the disturbance correctly in the presence of 
noise. This ability of S-Transform attracts the researchers for 
the detection and classification of PQ disturbances. The ST is 
useful in detecting and extracting disturbance features of 
various types of electric power quality disturbances. Basically, 
ST is an invertible time–frequency spectral localization 
technique, which combines elements of WT and STFT (Short 
Time Fourier Transform). It can also be represented as a 
continuous wavelet transform with a phase correction. It 
produces a constant relative bandwidth analysis like wavelets, 
although maintains a direct link with Fourier spectrum. The ST 
has an advantage in that it provides multi-resolution analysis 
while retaining the absolute phase of each frequency. This has 
led to its application for detection and interpretation of non-
stationary signals. Further, the ST provides frequency contours 
which clearly localize the signals at a higher noise level. The 
major advantage over WT of ST is to avoid the requirement of 
testing various families of wavelets to identify the best one for 
a better classification. Furthermore, ST can classify four types 
of PQ disturbances by visualizing the time-frequency contour.  
The output of the ST is an M×N matrix, whose rows pertain to 
frequency and columns indicate time. Each column thus 
represents the “local spectrum” for that point in time. To 
construct an effective classifier, it is essential to choose a 
suitable feature vector that can indicate and recognize the main 
characteristics of signal.  For this purpose, the statistical 
features based on ST, which indicates and recognizes the main 
characteristics of   signal without losing its distinguishing 
characteristics, is extracted in the proposed approach discussed 
in Sections III-C and III-D. 

A. Discrete S-Transformation 

Let x(t) denote a continuous time signal, which is sampled 
with a sampling interval Ts; the sampling process yields a dis-
crete time series x(kTs), k = 0, 1, 2, ….., N-1. 

The DFT (Discrete Fourier Transform) of the signal x(kTs) is 
given by 
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Where n =0,1,2,….,N-1 and the IDFT (Inverse Discrete 
Fourier Transform) is  
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In discrete-time domain, if the vectors defined by x(kTs) are 
observed, it is revealed that S-Transform is merely the projection 
of those vectors onto a spanning set of vectors [12].  Now, the 
S-Transform of x(kTs) is given by [12] 
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where  222 /2),( nmemnG   is a Gaussian function and j, m, n 

= 0, 1, 2, 3,……, N-1. By adopting the following steps, discrete 
S-Transformation of a signal are computed. 

• Step 1: DFT of the discrete-time signal x(kTs) is con-
ducted to obtain  SNTmX / . 

• Step 2: For the target frequency (n/NTs), the Gaussian 
function G(n,m) is computed. 

• Step 3: By employing one pointer addition,  SNTmX /  

is shifted to  SNTnmX /)(   for the target frequency 

(n/NTs). 

• Step 4: G(n,m) is multiplied by  SNTnmX /)(   to ac-

quire  SS NTmNTnB /,/ . 

• Step 5: IDFT of  SS NTmNTnB /,/  yields 

 SS jTNTnS ,/  corresponding to the j row and fre-

quency (n/NTs). 

• Step 6: Steps 3, 4, and 5 are repeated until all the rows 
of  SS jTNTnS ,/  corresponding to all discrete 

frequencies are obtained. 

From (4) it is evident that output of S-transform is an N×M 
complex matrix (S-matrix) where columns are associated with 
time and rows are associated with frequency.  

B. Mahalanobis Distance 

Mahalanobis Distance (MD), which is introduced by P.C. 
Mahalanobis in 1936, is a unique method for distance 
measurement. It is based on correlation between variables or 
samples which are used to analyze different patterns of a 
system. Mathematically, it can be given by 

                  (5) 

where  is the multivariate vector, 

is the mean/average of the group of 
samples or values from which MD is measured and S = 
covariance matrix of the group of samples [7]. 

C. Feature Extraction 

S-transformation gives large time-resolution at higher fre-
quency and large frequency resolution at low frequency; due to 
these properties of S-transform, it can be very effective for non-
stationary power signal. In this work, the sampling frequency 
of 3.2 kHz is kept during the simulation of 10 types of PQ 
events as well as the features extraction from S-Transform.  

From S-matrix magnitude and frequency can be extracted 
and to support this statement, Fig. 1 is shown as an example, 
which illustrates a sag signal and its S-Transformed features. In 
Fig. 1(a), the dash line represents the locus of a curve which is 
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obtained by taking the maximum value of the elements residing 
in each column of S-matrix corresponding to the respective 
time. Fig. 1(b) illustrates the frequency contour of S-matrix. 
Fig. 1(c) exhibits the maximum magnitude of the complex 
variables present in each row and it indicates the maximum 
amplitude present in each frequency components of the signal. 

 

  
 

 

Fig. 1. Voltage sag signal and its S-Transformed feature waveforms. 

Feature extraction is a crucial task for classification and in 
this paper, this task (feature extraction) is conducted by taking 
standard deviation (SD) and energy of the S-Transformed 
signal in the following way: 

 

• Feature 1 (F1): SD of the set of data extracted from the 
elements corresponding to maximum absolute value of 
each column of S-matrix. 

• Feature 2 (F2): Energy of the set of data extracted from 
the elements corresponding to maximum absolute value 
of each column of S-matrix. 

• Feature 3 (F3): SD of the set of data extracted from the 
elements corresponding to maximum absolute value of 
each row of S-matrix. 

• Feature 4 (F4): Energy of the set of data extracted from 
the elements corresponding to maximum absolute value 
of each row of S-matrix. 

D. Proposed Algorithm 

The proposed approach requires S-transformation on the 
voltage signal for feature extraction; see the detailed feature 
extraction procedure in Section III-C. Then, minimum dis-
tance based MD classification rule is applied to classify the 
PQ events. This paper deals with the classification of 10 
classes or groups of PQ events; the groups are: G1 (pure 
normal signal), G2 (sag signal), G3 (swell signal), G4 
(harmonic), G5 (sag with harmonic), G6 (swell with 
harmonic), G7 (notch signal), G8 (flicker signal), G9 
(transient), and G10 (momentary interruption). Firstly, 
several PQ events corresponding to 10 groups are generated 
by using the equations presented in Table I. Then, S-
Transformation is applied on the 10 groups of signal to 
extract four features for each event. Thereafter, a reference 
group of feature matrix labeled with group number is 
constructed.  

 

Fig. 2. Flowchart of the proposed approach. 

Lastly, classification task is conducted by following the proposed algorithm 

shown in Fig. 2. As shown in the flowchart of Fig. 2, firstly, a single phase 

instantaneous voltage waveform (in this case test event) is passed through the 
S-Transformation followed by 4 features (F1, F2, F3, F4) extraction. Then, 

classification task is carried out on the principle of least Mahalanobis distance 

(MD) between the feature vector of test event and the feature matrix of 
reference groups. For example, if the MD between features of test event and the 

feature matrix of “reference sag group” is minimum, then the test event 

experiences sag. 

IV. RESULTS AND DISCUSSIONS 

This Section presents the test results associated with the 
classification of 10 groups of PQ events. To this end, firstly, a 
total of 1800 PQ events are generated by using the equations 
shown in Table I. Each group or class contains 180 events, 
among which 80 events are used to form the reference group 
feature matrix (see Section III-D) and the remaining 100 events 
are used for testing. Therefore, a total of 800 events are used for 
building the reference group-wise feature matrix and 1000 
events are used for testing or evaluating the performance of the 
proposed approach. Note that different PQ events belonging to 
the same group are generated by varying several parameters, 
e.g., for the sag case, α is varied from 0.1 to 0.9 (see Table I) 
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with a step-size of 0.01 along with the variation of t1 (inception 
time) and t2 (ending time). 

Classification results of the S-transform and MD based 
method are shown in Table II, where the diagonal elements 
(written in bold) represent the number of successfully classified 
events and off-diagonal elements indicate the number of 
misclassified PQ events. The overall accuracy is obtained from 
the ratio of the number of successfully classified PQ events to 
the total number of PQ events. Table II highlights the successful 
classification of all groups of PQ events with overall accuracy 
of 95.4%. However, to test the robustness of the proposed 
approach, noise is added at different level which ranges from 
SNR (Signal-to-noise-ratio) of 20 dB to 40 dB. The test results 
show overall accuracy of above 90% under noisy condition, see 
Table III. 

TABLE II.  CLASSIFICATION OF PQ EVENTS USING MD CLASSIFIER 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 94 0 0 0 0 0 0 0 0 0 

G2 1 92 0 0 0 0 0 0 0 0 

G3 0 0 100 0 0 0 0 0 0 0 

G4 1 3 0 84 0 0 0 0 0 0 

G5 0 1 0 0 100 0 0 0 0 0 

G6 0 0 0 0 0 100 0 0 0 0 

G7 0 1 0 1 0 0 84 0 0 0 

G8 0 1 0 2 0 0 0 100 0 0 

G9 0 0 0 0 0 0 0 0 96 0 

G10 0 0 0 0 0 0 0 0 0 100 

Overall accuracy 95.4% 

 

TABLE III.  CLASSIFICATION OF PQ EVENTS WITH NOISE USING MD 

CLASSIFIER 

 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

G1 95 0 0 4 0 0 1 0 0 0 

G2 1 91 0 7 0 0 0 1 0 0 

G3 1 0 89 5 0 1 0 1 3 0 

G4 1 3 0 93 0 0 2 1 0 0 

G5 0 2 0 3 94 0 1 0 0 0 

G6 0 0 2 2 0 93 0 2 1 0 

G7 3 2 0 2 0 0 91 2 0 0 

G8 1 1 0 6 0 1 0 90 1 0 

G9 0 0 1 1 2 3 1 0 92 0 

G10 0 3 0 2 0 0 0 0 0 95 

Overall accuracy 92.3% 

A. Comparative Study 

The proposed approach, specially the MD classifier, is 
compared with LVQ (learning vector quantization) and MED 
(minimum Euclidean distance) classifiers. LVQ, a supervised 
version of SOM (self organizing map) is used for solving 
classification problems in particular. Tables IV and V show the 
comparative performance among LVQ, MED and MD 
classifiers considering 3, 4, 7, 9 and 10 groups of PQ events. 

The overall accuracy of LVQ, MED and MD is found as 90%, 
95% and 96% when 3 groups of PQ events are tested, see Table 
IV. Additionally, increasing the number of groups or classes, 
the comparative study is conducted and results are shown in 
Table V. From Table V it is evident that performance of LVQ 
and MED degrades severely as the number of groups increase 
whereas MD shows excellent performance with 10 groups of 
PQ events. 

TABLE IV.  CLASSIFICATION RESULTS OF PQ EVENTS USING LVQ, MD 

AND MED CLASSIFIERS CONSIDERING THREE GROUPS 

 
LVQ MED MD 

G1 G2 G3 G1 G2 G3 G1 G2 G3 

G1 99 1 0 93 4 3 94 0 0 

G2 13 83 4 3 96 1 1 92 0 

G3 10 3 87 3 1 96 0 0 100 

 
Overall accuracy 

=90% 
Overall accuracy 

=95% 
Overall accuracy 

=96% 

TABLE V.  CLASSIFICATION RESULTS OF PQ EVENTS USING LVQ, MD 

AND MED CLASSIFIERS CONSIDERING MORE THAN THREE GROUPS 

No. of Groups 
Accuracy of classification 

LVQ MED MD 

4 groups (G1-G4) 90% 95.2% 92.6% 

7 groups (G1-G7) 82% 91% 93.5% 

9 groups (G1-G9) 70% 85% 94.4% 

10 groups (G1-G10) 61% 81% 95.4% 

 

B. Validation of Proposed Approach using IEEE 1159.2 

Working Group Data 

This Section presents the classification results of sinusoidal 
waveforms of 15 power quality (PQ) events, which have been 
taken from an authentic source of IEEE 1159.2 working group 
data [8], see Fig. 3 for illustration. The proposed technique is 
validated by achieving 100% successful classification results 
for 15 voltage signals denoted as PQ event 1, PQ event 2 and 
so on. The classification results are shown in Table VI. 

 
 
 

TABLE VI.  CLASSIFICATION RESULTS OF 15 PQ EVENTS OF IEEE 1159.2 

WORKING GROUP DATA USING PROPOSED APPROACH 

Voltage signals Classified  Power 

Quality Events 

PQ event 1, 15 Sag with harmonics 

PQ event 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 

14 

Flicker 

PQ event 12 Transient 

 
 

(a)                                          (b) 
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(c)                                             (d) 

 
                                  (e)                                              (f) 

 
                                    (g)                                          (h) 

 

Fig. 3. Voltage Signal affected by deffernet PQ Events [8]. 

V. CONCLUSIONS 

This paper presents an effective method for detection and 
classification of power quality (PQ) disturbances or events. The 
proposed method incorporates S-Transform and Mahalanobis 
Distance technique; S-Transformation is used to extract four 
features required for classification and least MD classifier 
accurately classifies the PQ events. Since proposed approach 
exploits less number of features, less memory space is needed 
for classification and it assists to reduce the computational 
burden to a great range. Furthermore, MD based classification 
does not require any off-line training of the PQ events; it only 
requires to form the feature matrix labeled with PQ event-wise 
groups. Throughout the simulation results it is observed that the 
proposed method accurately classifies 10 PQ events even under 
noisy conditions. Hence, it outperforms the wavelet analysis 
which is prone to noise. Moreover, MD classifier is compared 
with LVQ and MED classifiers, and the best results are 
observed from MD based technique. Therefore, the proposed 
approach would be an effective solution for detection and 
classification of PQ events. 
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