
 Partha Sutradhar, Victor Stany Rozario

Abstract—The Meta-heuristic and Heuristic algorithms have been

introduced for deep neural network optimization in this paper.

Artificial Intelligence and the most used Deep Learning methods

are getting popularity in these days, thus we need faster

optimization strategies for finding more accurate results in the

future. Neural Network Optimization with Particle Swarm

Optimization, Backpropagation (BP), Resilient Propagation

(Rprop), and Genetic Algorithm (GA) have been used for

numerical analysis of different datasets and compared with each

other to find out which algorithms work better for finding optimal

solutions by reducing training loss. Meta-heuristic algorithms GA

and PSO are higher-level formulas and problem-independent

techniques that may be used for a diverse number of challenges.

The characteristic of heuristic algorithms has extremely specific

features that vary depending on the problem. The conventional

backpropagation (BP) based optimization, genetic algorithm,

particle swarm optimization, and resilient propagation (Rprop)

are all fully presented, and how to apply these procedures in

artificial deep neural networks optimization is also thoroughly

described. Applied numerical simulation over several datasets

shows that the Meta-heuristic algorithm particle swarm

optimization and also the genetic algorithm performed better than

the conventional heuristic algorithm like backpropagation and

resilient propagation over these datasets. Evaluation of these

algorithms was done based on training epoch and their error

convergence.

Index Terms— Artificial Neural Networks, Resilient

Propagation (Rprop), Particle Swarm Optimization (PSO),

Genetic Algorithm (GA), Backpropagation (BP), Meta-Heuristic

Algorithm, Heuristic Algorithm.

I. INTRODUCTION

 here has been a significant amount of growth in Artificial

Intelligence, Machine Learning, and Reinforcement

Learning, and Deep Neural Network have been seen during the

earlier few decades. Therefore, we need faster learning and

optimization algorithms for better and more efficient

computational benefits. We have selected Particle Swarm

Optimization, Genetic Algorithm (GA), and Backpropagation

(BP) and, Resilient Propagation (Rprop) algorithms for

research work.

Partha Sutradhar is a graduate student of the Department Computer

Science, American International University-Bangladesh, Dhaka-1229,

Bangladesh. Email: partharaj.dev@gmail.com.

Victor Stany Rozario is an Assistant Professor in the Department

of Computer Science under the Faculty of Science and Technology

at American International University-Bangladesh, Dhaka-1229,

Bangladesh. Email: stany@aiub.edu.

Especially, Neural Network is also a bio-inspired based

Artificial Neural Network which consists of many dense layers

and each layer has a set of neurons called nodes, synapses, and,

biases. Artificial Neural Network learns by minimizing the cost

of the network predicted by the neural network. For this

purpose, we need to alter the weights in such a manner that the

weights in the neural network provide better and more accurate

prediction, and to update these weights we can use meta-

heuristic and heuristic algorithms to minimize the cost of the

network. Most meta-heuristic systems are generic and can be

functional to a diverse range of problem sets, whereas heuristic

methods are often created for a specific array of problems. Here,

we are going to compare generic bio-inspired algorithms known

as Particle Swarm Optimization and Genetic Algorithm (GA)

with application-specific algorithms like Backpropagation (BP)

and Resilient Propagation (Rprop).

Neural Networks are prediction-based computing methods

inspired by the nervous systems of our biological brain and are

now applicable in most high-level intelligence system

designing [1]. The neural network learns from numerous input

patterns from the datasets and updates the synaptic connection

weights for achieving the accurate and expected output [1].

Neural Network gets the input and then feeds it forward through

neurons to the output layer. Then, the output layer produces the

result, if the result is not expected then we need to update the

synaptic weights vectors for the expected result. There are

several algorithms used in the development of updating the

weights for better performance. Traditionally, Backpropagation

(BP) algorithm is used. This paper validates some of the bio-

inspired algorithms named meta-heuristic algorithms that can

achieve better performance than application-specific

Backpropagation and Resilient Propagation which is a heuristic

algorithm. There is some implication of a meta-heuristic

algorithm. Implications of the meta-heuristic algorithm are, that

it gets stuck in local minima and stays there for quite some time

which makes the training period lengthy.

II. LITERATURE REVIEW

This is the era of Artificial Intelligence that is governing the

world with the power of Neural Networks that has been

reversed and engineered from our biological brain

functionality. Therefore, it is very much crucial to optimize the

network learning capacity. There are a lot of algorithms that can

optimize neural network weights.

In-Depth Case Study on Artificial Neural Network

Weights Optimization Using Meta-Heuristic and

Heuristic Algorithmic Approach

T

AIUB JOURNAL OF SCIENCE AND ENGINEERING
ISSN: 1608 – 3679 (print) 2520 – 4890 (Online)

Published in AJSE, Vol:21, Issue: 2
Received on 5th April 2022

Revised on 22th October 2022
Accepted on 23rd November 2022

AJSE Volume 21, Issue 2, Page 98 - 109 Page 98

Jiri Stastny [9] et al proposed a scheme of a simpler network

configuration for the learning process of neural networks. They

have designed a Topology for Artificial Neural networks for

effective learning using the Genetic Algorithm. The genetic

Algorithm looks for precise settings of neural network weights

and if fails it practices minimization of its given function [9]. A

stochastic heuristic approach is recognized as the Genetic

algorithm. Adaptive and evolutionary pathways in living

organisms encourage genetic algorithms [9]. The major

applications that use Genetic Algorithms are in analytical

problem solutions domain which are unknown or extremely

complicated. A genetic algorithm allows us to get to a solution

to a numerical problem that is not known using evolutionary

use cases [9].

Alan Mosca [11] et al proposed Adapting Resilient Propagation

for Deep Learning by using an adjustment of the Resilient

Propagation (Rprop) that included the standard Rprop steps

with a special dropout technique. They have applied the

methods of Deep Neural Networks as individual modules and

ensembles in formulations [11]. Dropout [11, 12] is a

regularization process in which just a random subset of nodes

in the network are updated during each training iteration, but

the entire network is used at the final evaluation. They have

compared their Adapting techniques with Stochastic Gradient

Descent, unmodified Resilient Propagation, and modified

Resilient Propagation to speed up the training process [11].

Garro, Beatriz A et al [22] proposed a method that designs an

Artificial Neural Network using PSO algorithms automatically.

The goal of these strategies is to generate all three major

components of an ANN simultaneously moment: synaptic

weights, connections or architecture, and transfer operations for

every neuron. To evaluate the efficiency of each approach and

discover the optimum design, eight different fitness functions

were offered. Furthermore, the proposed approach is associated

with those created by manually utilizing the recognized Back-

Propagation and Levenberg-Marquardt Learning Algorithms

[22]. Finally, the method's accuracy is evaluated using a variety

of nonlinear traditional classification challenges.

Researchers are trying to combine meta-heuristic and heuristic

algorithms to predict some big events like earthquakes and

natural disasters. PSO-BP combined structure has been

introduced to predict big natural disasters like earthquakes [23].

III. DEEP NEURAL NETWORK OPTIMIZATION

Fundamentally, Deep Neural Network is an Artificial Neural

Network consisting of many dense layers and each layer

contains a set of neurons, synapses, and biases. This allows

computational models with several layers of nodes to learn

multiple degrees of abstraction for data representations. A deep

Neural Network is set with many layers in this way as shown in

Fig. 1. There are a lot of algorithms that are capable of

optimizing the weights of a simple neural network [16, 17].

Fig. 1. Deep Neural Network

In the field of neural network optimization, there has already

been a lot of improvement. Neural Networks have vastly

enhanced the region in the detection of objects, pattern

recognition, simulation, and predictions. In Neural Network we

take inputs first, forward propagate the input values through the

network and get outputs in the output layer which is the last

layer of the Neural Network then we compare outcome values

with target values and calculate the loss. So, the loss of the

neural network determines how wrong a prediction was so it

takes as input the predicted outputs and compares them with

ground truth outputs. If those two things are extremely far

away, the loss will be quite great. However, the nearer these

two things are to each other than the lower the loss will be and

the more accurate the model will be. Therefore, we should

minimize the loss we want to incur if we want to predict

something as close as possible to the ground truth. There are

many loss functions like cross-entropy, log-loss, Mean Squared

Error, Root Mean Squared Error (RMSE).

A. Loss optimization: To use this loss function to train the

weights of our neural network such that it can learn that

problem well what we want to do is to find the weights of the

neural network that will minimize the loss of our dataset.

Fig. 2. Problem Search Space

A deep Neural Network needs to update the weights of its

network to reduce the cost or loss according to its loss function.

Fig.2 represents that we can go through the search space to find

out the optimal solution.

𝑀𝑆𝐸 =
1

𝑁
 ∑ (𝑌𝑖 − �̂�1)

2𝑁
𝑖−1 (1)

AJSE Volume 21, Issue 2, Page 98 - 109 Page 99

Here, MSE represents Mean Squared Error and we are using

this loss function to optimize the Artificial Neural Network

using the preferred algorithms. In this research context, we have

described the BP, PSO, GA, and Rprop algorithm for

optimizing the neural network weights. This algorithmic

approach could lead us to find which one is better for Neural

Network optimization.

IV. PARTICLE SWARM OPTIMIZATION

Algorithm Particle Swarm Optimization is inspired by the

social behavior of biological environmental life form process.

It is an evolutionary algorithm invented by Eberhart and

Kennedy in 1995. It is an iterative method that optimizes a

problem by improving its particle position. It has several

particles as a population and every individual particle in the

population has the neural network synaptic weight values. The

algorithm’s work is to move particles around the problem

search space using the position and velocity of the particles and

find the optimal solution in the iterative method [15].

Fig. 3. Neural Network & PSO Search Space

Here, each particle in Particle Swarm Optimization holds the

synaptic weight values of a neural network as position in search

space and uses the position and velocity of the PSO algorithm’s

hyperparameter to alter the position and velocity of each

particle to exploration for the global optimum of the artificial

neural network. This is an iterative method and after each

iteration, the particle gets closer to the optimum of the neural

network. Here, x is the position vector 𝑥𝑖
𝑛 =

𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑛,) and velocity v vector 𝑣𝑖
𝑛 =

𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, . . . , 𝑣𝑖𝑛) . Looking at the position vector and

velocity vector n is the iteration for each of the particles and i is

the responsible particle working on that n-th iteration. Below is

the equation of particle swarm optimization search:

𝑉𝑖𝑑
𝑛+1 = 𝑤𝑉𝑖𝑑

𝑛 + 𝑐1𝑟1 (𝑝𝑖𝑑
𝑛 − 𝑥𝑖𝑑

𝑛) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛) (2)

𝑋𝑖𝑑
𝑛+1 = 𝑋𝑖𝑑

𝑛 + 𝑉𝑖𝑑
𝑛+1 (3)

In equation 2. w is the inertia weight and cognitive weight

and is social weight in this algorithm and r1 𝑟2 is a random

value between 0 < r < 1 [4]. Local Best and Global Best particles

take place to find the optimal solution for a neural network. The

global best is where the best fitness is found and the local best

is the particle amongst all the particle’s positions [10]. The

neural network optimization happens and learns the best

weights from the position of the neural network. In Fig. 3, we

see that particle looks for the global optimum of the neural

network and calls other particles to come to (Global Best)

GBest particle because GBest holds the current best position of

neural network weights and all other (Particle Best) PBest

particles moves to GBest particle according to new velocity and

position [15]. Again, in the next iteration, the Particle position

changes due to velocity and randomness [15]. Therefore, the

GBest Particle as known as Global Best in search space will

eventually find the best global optimum position of the neural

network. PSO algorithm is also an exploration algorithm

because it searches around all the search space. We can

integrate this algorithm for Neural Networks like the ANN-PSO

model [15].

V. BACKPROPAGATION

A basic Neural Network is made up of the input neurons, hidden

units neurons, and output neurons. Neural Network is really

good for non-linear predictions and generally used for the

problem-specific dataset. Neural Network has two parts for the

training phase, first Forward Propagation and then Backward

Propagation. In Forward Propagation, the values go to input

vector values and go through the network and each activation

function produces an output for all the hidden layers. Then, the

output layer gives an estimated result. If the result is not

satisfied then we use backward propagation using loss

calculated from the last layer and update the weights according

to gradient-based optimization. We also use the momentum

factor for faster optimization of neural networks in

Backpropagation (BP).

1. Forward Propagation

First, the Phase of the Neural Network is to forward propagate

the input vector to the hidden layer and generate outputs in the

output layer. Each layer has neurons and every neuron has

synaptic weight connected to the previous layer. Neuron work

is to calculate the weighted sum from all the connected synaptic

weights, plus adds bias 1, and then applies an activation

function to generate output from that individual neuron. Below

eq. 4 is the logistic function also known as the sigmoid function

and eq. 5. is a derivative of a logistic function of eq. 4.

𝑓(𝑥) =
1

1+𝑒 −𝑥
 (4)

𝑓′(𝑥) = 𝑓(𝑥) ∗ (1 − 𝑓(𝑥)) (5)

The whole idea of forwarding propagation is to feed forward

the input vectors from the datasets then generate outputs and

calculate the loss at the output layer. Then Backpropagation

takes place to update the weights for optimizing the network to

generate satisfied predicted outcomes and reduce the loss.

AJSE Volume 21, Issue 2, Page 98 - 109 Page 100

Fig. 4. Forward Propagation

2. Backward Propagation

The second, Phase is to update weights according to the

calculated loss from the last layer of the artificial neural

network using the gradient descent approach. Gradient Descent

Optimization is also known as Backpropagation (BP) the main

usage of the Backpropagation (BP) algorithm is to update

weights to train the artificial neural network to learn from the

dataset and make accurate predictions after training. Now, the

main work is done in the last layer of the neural network which

calculates the total loss of the neural network using a simple

error function [18].

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
 (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2 (6)

After calculating loss, synaptic weights are updated regarding

the weighted error found from the last layer to the first layer.

Fig. 5. Backward Propagation (Backprop)

Here, looking at Fig. 5, we see that the total loss of the error is

calculated at the last layer and then synaptic weights are

updated according to a weighted error we have found using

Parts of the gradient computation from one layer are

reprocessed in the gradient computation for the preceding layer.

Iteratively, the neural network becomes trained sufficiently to

forecast accurately after a period of 10000 to 100000 iterations

for forwarding and backward pass.

∆𝑤𝑖𝑗 = (𝑛 ∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)) + (𝑚𝑢 ∗ ∆𝑤𝑖𝑗

𝑡−1) (7)

Here, eq. 8 shows weights updates with momentum.

Momentum increases the speed of finding the optimal result for

the neural network [18].

VI. RESILIENT PROPAGATION

Resilient Propagation is also known as the Rprop algorithm, an

efficient new form of the Backpropagation (BP) algorithm. This

algorithm is a direct alteration of the synaptic weight step based

on the knowledge of the local gradient found while training.

Rprop is a powerful gradient descent approach that

approximates updates only depending on gradient signs. It

stands for Resilient Propagation and is useful in a wide range of

contexts since it dynamically optimizes the step-wise size for

each weight independently. Many different types of algorithms

depend on the magnitude of the gradient and signs to find the

global minima [20]. It often works fine but it is not always a

good option, some of the time works badly and does not contain

the valuable information it needs. Using gradient magnitude to

optimize weights becomes questionable [20]. Also using a

settled learning rate to find the global minima fails. That’s why

Resilient Propagation (Rprop) ignores gradient magnitude for

better performance. Modern gradient descent variants use

dynamically adapting step sizes for overcoming this problem.

Resilient Propagation uses the positive and negative signs of the

gradient to find the global optimal solution. Resilient

Propagation algorithm, synaptic weights are updated by eq. 5

[21].

𝑤𝑖
𝑡 = 𝑤𝑖

𝑡−1 − 𝑛𝑖
𝑡−1 ∗ 𝑠𝑔𝑛 (

𝜕𝐸𝑡−1

𝜕𝑤𝑖
𝑡−1) (8)

Here, 𝑛𝑖
𝑡 is the step size for the t-th iteration of the gradient

descent and i-th weight. Where the sign of the partial derivative

of the error concerning the corresponding weight is determined

in the last step Using the given step size, we advance in the

direction of descent. For adapting the step size for each iteration

Resilient Propagation (Rprop) follows the formula for updating

the scheme [6, 21], eq. 9.

𝑛𝑖
𝑡 =

{

 min(𝜂𝑖

𝑡−1 ∗ 𝛼, 𝜂𝑚𝑎𝑥) 𝑖𝑓
𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡 ∗

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡−1 > 0

min(𝜂𝑖
𝑡−1 ∗ 𝛽, 𝜂min) 𝑖𝑓

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡 ∗

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡−1 < 0

𝑛𝑖
𝑡−1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

Here, α > 1 > β is the step size of the algorithm, and depending

on α, β algorithm decides whether speed should be increased or

decreased. The most accepted values of α and β are 1.2 and 0.5.

Though Resilient Propagation (Rprop) works well in many

scenarios, it is not quite good yet in finding solutions for more

complex problems.

AJSE Volume 21, Issue 2, Page 98 - 109 Page 101

VII. GENETIC ALGORITHM

A Genetic algorithm is an algorithm inspired by the course of

natural selection. It is also known as a Meta-heuristic algorithm,

above and beyond it is an evolutionary algorithm that is

collected from natural behavior[19]. A genetic algorithm is

used to solve high-quality problems solutions that are based on

search and optimization of problems. Genetic Algorithm (GA)

uses population, mutation, crossover, and selection for

optimization, and is also used in numerous search problems. We

can use a Genetic Algorithm to optimize neural network

synaptic weights to find the problem's best weights and reduce

the total datasets' loss. Looking at Fig. 1 we see that, the

artificial neural network has w1 to w21 synaptic weights, if we

can find the best weights for any specified dataset then network

prediction will be accurate.

A genetic algorithm finds the best individual neural network

from its population pool then it copies the same characteristic

or trained weights to other networks. Here these individuals

have been taken for getting more outcome variance so that the

best individual can be different from the parent weights vector

and still produce close to accurate of its ground truth value.

Fig. 6. Genetic Algorithm and Neural Network

The Genetic Algorithm (GA) algorithm has a population pool

where a number of a chromosome are there and each

chromosome has a gene. Chromosomes consist of genes in a

genetic algorithm inspired by nature. Here, for the optimization

of neural networks, we can use a genetic algorithm [19]. Each

chromosome represents a neural network and every gene in

chromosomes is denoted as weight.

Fig. 7. Selection

The genetic Algorithm (GA) selects the best two individual

chromosomes according to the best fitness from the population

pool for the crossover process. Parent 1 and Parent 2

chromosomes have synaptic weights as genes in Fig. 7.

Fig. 8. Crossover

After that crossover happens, Parent 1 and Parent 2 exchange

their genes and create new offspring from the two individual

parents. Here, flip the coin happens when genes from

chromosomes crossover to make a new individual [19].

Fig. 9. Mutation

In the mutation part, synaptic weights values randomly change

from some of the genes created from new offspring. Here, r1,

r2, r3, and r4 are random values produced from a threshold for

mutation. Now, the new offspring has its natural and individual

character. Each chromosome in the population has gene values,

we can set the values of synaptic weights in the chromosome as

genes. Then, we calculate the fitness function of the neural

network to check the total loss of the network. If the criteria of

the fitness function meet essential requirements then we stop

the iterative training of the genetic algorithm. When criteria do

not meet the requirements of the fitness function then we select

the two best individuals as parents from the population pool

according to the best fitness and we use the crossover technique

or mating to create new individuals from the parents by

exchanging their genes [19]. To do that we can use the flip the

coin technique as randomness. After that, we need to make the

new individual different from the parents. For that, we can use

mutation to change some of the synaptic weights as genes

randomly from the chromosome. Thus, a new offspring is

created. Then, iteratively we insert the offspring into the

population pool for again evaluating the fitness function. In this

iterative way, we can find the best synaptic weights from the

genetic algorithms by finding the lowest F(x) error meaning the

mean squared error for neural network training. Each iteration

is also known as generation in a Genetic Algorithm [19].

VIII. RESEARCH METHODOLOGY

The Research Methodology has two distinct types of points of

view. 1) Data Acquisition and 2) Applying Algorithms. Using

the encog machine learning library [13], we see the results of

the algorithms that are described in the paper which include

Resilient Propagation, Particle Swarm Optimization, and

Backpropagation also a customized version of the Genetic

Algorithm which was capable of optimizing Neural Networks

weights and also see the induced effects. Here, we have used

the epoch and saw how the resource utilization comes into

AJSE Volume 21, Issue 2, Page 98 - 109 Page 102

functioning and gives us the training loss results. It is also

possible to calculate training time by averaging each iteration

but we are going to use the epoch as an outcome. We have used

the Graph Tool known as matplotlib and NumPy to see the

effects in the classification process.

1. Dataset Acquisition

Datasets were acquired from the Kaggle. These datasets are

open source and good for the classification process. Besides, we

can make use of these datasets to make a strong understanding

of the neural network optimization process. There is a total of

713 observations for this research that is included here to see

the induced effects.

A. Xor gate

Xor or exclusive OR gate is a simple logic gate that only

produces true results when its inputs are different. It is the

standard approach for an artificial neural network to see if it can

draw the separation line to classify the logical gate and is

capable of doing other classification tasks. This has two input

variables with one targeting output variable with four

observations.

B. Iris dataset

The Iris Flowers Dataset is a simple dataset containing 150

observations of flower dimensions. It has been used to identify

flower species based on their dimensions. The dataset has four

features containing the width and length of petals, sepals, and

three classes Iris Setosa, Iris Virginica, and Iris Versicolor.

C. Sonar dataset

The Sonar Dataset is concerned with determining if the entity

is a Mine (M) or a Rock (R) based on the strength of sonar

returns at multiple viewpoints. This dataset contains 208

observations with 1 output variable and 60 input variables. The

output variable determines if the object is rock or mine.

D. Ionosphere dataset

The Radar System yields pointing free electrons found in the

ionosphere, and the Ionosphere Dataset demand the forecasting

of weather behavior in the atmosphere. It's a two-class binary

classification problem. There are 34 input variables and 1

outcome variable and found 351 observations were. Besides,

the total of observations per class is not evenly distributed. The

output variable determines if the atmosphere is Good (G) or

Bad (B).

2. Applying Algorithms

We have used 1 hidden layer with 10 Neurons in the XOR

dataset and Iris dataset and 2 hidden layers with 10 neurons for

the Sonar dataset and Ionosphere dataset because these two

datasets have a huge amount of input in the input layer of the

Artificial Neural Network. Hidden Layer uses Sigmoid

Activation Function. We have used Encog Machine Learning

[13] to produce the training losses and also used JFreeChart for

implementing the Graph. For the Genetic Algorithm, we have

used 500 population sizes as a default population pool of neural

networks. In Fig.10, we are seeing the whole process of that we

are applying a different algorithm for Artificial Neural Network

weights optimization. Here, we have used Particle Swarm

Optimization, Resilient Propagation, Genetic Algorithm, and

Backpropagation algorithm in this paper.

In this research paper, We have used the sigmoidal function for

the neural network activation function. In Fig. 10. We have

prepared the process in phases. In the first phase, we have

prepared the data for neural network input and output so that it

can fit easily in the neural network input layer and output layer

for each dataset because each dataset's input and output look

different from the other dataset. After the data preparation

phase, the algorithm selection phase is started. Here, we have

to select an algorithm to train the neural network to get the

training outcome. Next, the training phase started and after

1000 epochs, we stop the training to get to the output phase. In

the output phase, we store the neural network loss. This process

is again repeated until all of the algorithms are used on the

provided datasets. In this way, we can find the results of the

neural network losses. The process shows that we can optimize

Neural Networks with different algorithms like Bio-Inspired

PSO and GA and application-specific algorithms BP and

Rprop. We have used four datasets to see the results of these

algorithms that can reduce the training loss of neural networks

and provide an optimal solution.

Fig.10. Training Neural Network with Algorithms

Besides, we have used the matplotlib library to implement

multiple training losses in one graph. This type of work gives

us a visual idea. Nowadays, we are seeing a lot of growth using

artificial intelligence that uses a neural network. Therefore it is

very important for us to provide a more sophisticated algorithm

or optimization technique that leads us to accurate results.

IX. RESULTS AND ANALYSIS

In this section, the findings and performed simulations are

analyzed by training losses or errors of the Artificial Neural

Network by using meta-heuristic and heuristic algorithms that

are described in the paper. Observing the training error

reductions while training Neural Network will give us the best

AJSE Volume 21, Issue 2, Page 98 - 109 Page 103

optimal solution for each dataset we are using here. The lowest

the training loss value higher the accuracy will be. This case

study provides a comparison between the meta-heuristic

algorithm and heuristic algorithm using the xor gate, iris

dataset, sonar dataset, and ionosphere dataset. In this study, we

have found the particle swarm algorithm was better in all the

cases and also produced much better results than other

algorithms. The results that are found while performing the

algorithmic approach for Artificial Neural Network

optimization are given below:

1) Here, we going to see the effects of the training error results

of each algorithm described in the paper applied in simple the

XOR dataset. Each of the algorithms will try to adapt the weight

to minimize the loss function of the neural network.

Here, we have used the Backpropagation algorithm in the XOR

dataset to reduce the loss or training error of the artificial neural

network. Fig. 11 shows the convergences of neural networks for

the xor gate.

Fig.11 Applied Backpropagation (BP) on XOR Gate

The Resilient technique was applied to the XOR dataset to

reduce the artificial neural network's loss or training error.

Fig.12 illustrates the convergences.

Fig.12 Applied Resilient Propagation (Rprop)

 on xor gate

In Fig.12, we have applied the Particle Swarm Optimization

algorithm which is also known as PSO an evolutionary

algorithm to reduce the neural network error function loss.

After applying the algorithm network compellingly reduces in

less than a few epochs.

Fig.13 Applied Particle Swarm Optimization

on xor gate

Genetic Algorithm (GA) with Artificial Neural Network

combined structure shows that it has learned the problem set

very quickly and found the optimal solution. Thus, we are

seeing a close to zero figures graph in Fig.14.

Fig.14 Applied Genetic Algorithm (GA) on xor gate

Table. 1

Epoch
Training Loss

BP Rprop GA PSO

0 0.32482 0.81928 0.24622 0.24349

100 0.00902 0.00054 0.11366 0.00048

200 0.00226 0.00021 5.0E-41 0.00034

300 0.00133 0.00013 5.0E-41 0.00027

400 0.00089 0.00011 5.0E-41 0.00014

500 0.00065 0.00001 5.0E-41 0.00012

600 0.00051 0.00008 5.0E-41 0.00009

700 0.00041 0.00007 5.0E-41 0.00009

800 0.00034 0.00006 5.0E-41 0.00009

900 0.00029 0.00006 5.0E-41 0.00006

1000 0.00026 0.00005 5.0E-41 0.00005

Also, Table 1 contains all the training losses found while we are

training the neural network for the xor gate.

AJSE Volume 21, Issue 2, Page 98 - 109 Page 104

Fig.15. Training Losses of xor gate

By looking at Table.1, we have found that the Evolutionary

algorithms Genetic Algorithm and Particle Swarm

Optimization algorithm performed better than the rest of the

algorithms. The meta-Heuristic algorithm achieved faster

convergence in the XOR gate classification problem while BP

and Rprop algorithms took more epochs in the process of

reducing the neural network loss. Noticeably, we are seeing that

GA and PSO in Fig.15 have the lowest error rate in fewer

amount epochs.

2) Now, we are going to use the Iris dataset to see the

convergence speed of each algorithm that is provided to see and

analyze the finding results. Also, closely look at the graphs to

then compare them with other algorithms. The lowest the value

of loss higher the accuracy will be.

Here, we have again applied Backpropagation (BP) to the

standard Iris dataset to see the induced effects of the artificial

neural network loss. In Fig.16 we are seeing that the error of the

network is slowly decreasing in curve shape which is a good

indication of this algorithm.

Fig.16 Applied Backpropagation (BP) on the iris dataset

After applying Resilient Propagation (Rprop) in Fig.17

algorithm we have found that the Iris dataset was affectedly

learned by the neural network by reducing error quickly. Thus,

it has been shown that this algorithm is better than

Backpropagation (BP) for this dataset.

Fig.17 Applied Resilient Propagation (Rprop) on Iris

Besides, we have also used the Particle Swarm Optimization

algorithm for faster convergence of neural networks to learn the

Iris dataset. The results provided in Fig. 18 show that the

algorithm found the optimal solution for this dataset faster than

other algorithms. Looking at Table 2, we are seeing that in the

first to last epoch, this Particle Swarm Optimization (PSO) bio-

inspired algorithm found the optimal solution while the other

algorithm was still in the learning process. In Fig. 19, we have

shown that PSO is giving more promising results than the other

algorithms.

Fig.18 Applied Particle Swarm Optimization

on iris dataset

Below is Fig.19, which is containing the losses of neural

networks that were applied to the Iris dataset using the Genetic

Algorithm (GA).

Fig.19 Applied Genetic Algorithm (GA)

on iris dataset

AJSE Volume 21, Issue 2, Page 98 - 109 Page 105

Table.2

Epoch
Training Loss

BP Rprop GA PSO

0 0.96979 1.27222 0.19266 0.24426

100 0.47745 0.04830 0.07236 0.04157

200 0.14954 0.03545 0.07236 0.03715

300 0.11673 0.03246 0.07236 0.03268

400 0.11151 0.03022 0.07236 0.02896

500 0.11125 0.02858 0.03909 0.02761

600 0.11129 0.02709 0.03909 0.02617

700 0.11121 0.02593 0.03909 0.02437

800 0.07309 0.02492 0.03909 0.02347

900 0.05370 0.02409 0.02896 0.02328

1000 0.02372 0.02338 0.02896 0.02260

Here in Table 2, also includes all of the training losses

discovered while training the artificial neural network for the

iris dataset for finding the optimal solution.

Fig.20. Training Losses of the iris dataset

In the training process of the Artificial Neural Network of

Iris dataset Fig.20 shows the promising results that the

evolutionary algorithms are better at finding the optimal

solution for this dataset. Nevertheless, evolutionary or meta-

heuristic algorithms are bound to give sufficiently better results

to an optimization problem where the information is not clean

and incomplete.

3) At this time, we will utilize the Sonar dataset to examine the

convergence speed of each of the algorithms that have been

presented, as well as to examine and analyze the findings.

For this Sonar dataset, we have used the Backpropagation

(BP) algorithm and in Fig. 21 we are seeing the training error is

reducing correspondingly.

Fig.21. Applied Backpropagation (BP)

on sonar dataset

In Fig. 22, the algorithm Resilient Propagation was used to

optimize the loss function on the Sonar dataset. Besides, we are

seeing that it has reduced the loss much faster than the

Backpropagation (BP) algorithm.

Fig.22. Applied Resilient Propagation (BP)

on sonar dataset

Besides, we are also getting efficient results after applying

Particle Swarm Optimization for the Sonar dataset. Here, the

Meta-Heuristic algorithm Particle Swarm Optimization (PSO)

got very prominent results where over the Rprop algorithm we

used earlier. In Fig. 23 we are seeing the training loss which

was conducted during the training period. Also, this algorithm

provided a much quicker training error than the other algorithm.

Fig.23. Applied Particle Swarm Optimization

on sonar dataset

AJSE Volume 21, Issue 2, Page 98 - 109 Page 106

In Fig.24, we have again used the Genetic Algorithm to see

the induced effects after applying the training to the Sonar

dataset. Here, we can see the training loss.

Fig.24. Applied Genetic Algorithm (GA)

on sonar dataset

Table. 3

Epoch
Training Loss

BP Rprop GA PSO

0 0.25506 0.27759 0.24227 0.24034

100 0.24473 0.08154 0.12595 0.11811

200 0.23363 0.04310 0.12283 0.08703

300 0.21193 0.03778 0.12283 0.08024

400 0.18122 0.02885 0.12283 0.07476

500 0.15584 0.02885 0.12283 0.06263

600 0.13774 0.02885 0.11249 0.04180

700 0.12481 0.02885 0.10939 0.03508

800 0.11536 0.02885 0.10939 0.03046

900 0.10813 0.02885 0.10939 0.02841

1000 0.10203 0.02885 0.10939 0.02557

Nevertheless, all of the training losses discovered during

training the artificial neural network for the Sonar dataset for

finding the optimal solution are included in Table 3 is shown.

Fig. 25. Training Losses of sonar dataset

Fig.25 displays hopeful results from the training phase of the

Artificial Neural Network of Ionosphere dataset, indicating that

evolutionary algorithms are better at finding the ideal solution

for this dataset.

4) Besides, we will look at the implications of the training error

findings of each approach given in the study on the Ionosphere

dataset in this section. Each method will attempt to adjust the

weight to reduce the neural network's loss function.

In this context, we have applied the Backpropagation (BP)

algorithm to the Ionosphere dataset. Below Fig.26 contains all

the training errors. This algorithm training loss has a curved

shape in the Graph.

Fig.26. Applied BP on the ionosphere

Moreover, we have again used the Resilient Propagation

(Rprop) algorithm on the Ionosphere dataset. In Fig. 27, we

have shown the training losses found while training Artificial

Neural Network for the Ionosphere dataset.

Fig.27. Applied Resilient Propagation (Rprop)

on ionosphere dataset

In Fig.28 after applying the Particle Swarm Optimization

algorithm for the Ionosphere dataset the training loss graph has

been shown.

Fig.28. Applied Particle Swarm Optimization

on ionosphere dataset

AJSE Volume 21, Issue 2, Page 98 - 109 Page 107

The training loss graph for the Ionosphere dataset is given in

Fig.28 after using the Genetic Algorithm for Neural Network.

The Graph shows that the loss of the training got stuck for some

time in epoch 100-700 and again regain reducing the training

losses.

Fig.29. Applied Genetic Algorithm (GA) on ionosphere

dataset

Table. 4

Epoch
Training Loss

BP Rprop GA PSO

0 0.29415 0.27756 0.20044 0.22245

100 0.15070 0.00868 0.04675 0.07281

200 0.09685 0.03930 0.04675 0.03868

300 0.07349 0.00901 0.04675 0.02386

400 0.06121 0.01234 0.04675 0.01787

500 0.05336 0.03443 0.04675 0.01420

600 0.04617 0.02280 0.04675 0.01248

700 0.03943 0.01739 0.04675 0.01086

800 0.03419 0.01675 0.03185 0.01000

900 0.03021 0.01140 0.03185 0.00914

1000 0.02708 0.01140 0.03185 0.00861

In Table. 4, there are a lot of training losses we are seeing but

the table shows that Particle Swarm Optimization is better at

reducing the training losses. Hence, Particle Swarm

Optimization provided the best optimal solution in this context.

Fig.30. Training Losses of Ionosphere dataset

The results are good when applied to bio-inspired algorithms

like Particle Swarm Optimization. But Genetic algorithm did

not produce good results on the Ionosphere dataset.

Here, we have used four datasets that include the XOR gate,

Iris dataset, Sonar dataset, and Ionosphere dataset. Particle

Swarm Optimization was better in three datasets named Iris,

Sonar, and Ionosphere. Besides, the Genetic Algorithm has

gained a lot of training loss in the XOR gate. Both algorithms

are bio-inspired whereas the other algorithms were application-

specific like Backpropagation (BP) and Resilient Propagation

(Rprop). Hence, the Particle Swarm Optimization and also

Genetic Algorithm were not application-specific but this

algorithm produced good results in optimizing the weights of

the Neural Network. In the research paper, after getting training

loss results, we find that the evolutionary bio-inspired algorithm

Particle Swarm Optimization was better and it is also a meta-

heuristic algorithm.

X. DISCUSSION

In this case study research paper, we have discussed Deep

Neural Network Optimization with meta-heuristic and heuristic

algorithms. We have also used bio-inspired algorithms Genetic

algorithm which works by the course of natural selection and

also Particle Swarm Optimization. Besides, there were also

application-specific algorithms like Backpropagation and

Resilient Propagation respectively. We have compared four

datasets applying these application-specific and Bio-Inspired

algorithms by looking at the convergence meaning reducing the

loss of the neural network. The Particle Swarm Optimization

algorithm produced the lowest training loss meaning it has the

highest probability of getting the highest accuracy respectively.

Lower training loss means higher accuracy. Therefore, we have

seen that bio-inspired algorithm particle swarm optimization is

producing the optimal solution faster and more accurately. In

this paper, we have included all the documents that relate to

Meta-Heuristic and Heuristic algorithms.

XI. CONCLUSION

The motivation of this research is to highlight bio-inspired

and application-specific algorithm performance. To optimize a

loss function these meta-heuristic algorithms like particle

swarm optimization can be used because of their computational

efficiency also particle swarm optimization and genetic

algorithms are evolutionary algorithm which is inspired by

living organisms that reflects natural behavior. Neural Network

is a bio-inspired algorithm that is collected from the behavior

of nature and now it is used by almost every field. Therefore it

is crucial to use an optimization algorithm that is reversed

engineered from nature and also has computational efficiency.

If we can utilize the nature-inspired algorithm more, we will

have a more robust structured algorithm that will provide a

decent amount of performance. We found that the meta-

heuristic algorithm PSO was better in this case study. We used

the Genetic algorithm and the Particle Swarm Optimization

algorithm as bio-inspired algorithms and on the other hand, we

have used the application-specific algorithms Backpropagation

and Resilient Propagation to find the optimal solution for the

dataset that we have compared here. Nevertheless, we have also

described how this algorithm works with Artificial Neural

Network Optimization techniques. In conclusion, we have

come to a solution that the bio-inspired algorithm Particle

Swarm Optimization was better in all of the case studies.

AJSE Volume 21, Issue 2, Page 98 - 109 Page 108

XII. REFERENCES

[1] Abhijit Suresha, K.V Harisha, N. Radhikaa, “Particle swarm optimization

over back propagation neural network for length of stay prediction”, 2015.

[2] M. Carvalho and T.B. Ludermir, “Hybrid Training of Feed-Forward Neural

Networks with Particle Swarm Optimization”, Springer-Verlag Berlin

Heidalberg, 2006.

[3] Venu G. Gudise and Ganesh K. Venayagamoorthy, “Comparison of Particle

Swarm Optimization and Backpropagation as Training”, 2003.

[4] Xiao-Lin Li, Roger Serra, Olivier Julien. “Effects of the Particle Swarm

Optimization parameters for structural dynamic monitoring of cantilever

beam”. Surveillance, Vishno and AVE conferences, INSA-Lyon,

Université de Lyon, Jul 2019, Lyon, France.

[5] Venu G. Gudise and Ganesh K. Venayagamoorthy, “Comparison of Particle

Swarm Optimization and Backpropagation as Training Algorithms for

Neural Networks”, 05 June 2003, DOI: 10.1109/SIS.2003.1202255

[6] Martin Riedmiller, Heinrich Braun, “A Direct Adaptive Method for Faster

Backpropagation Learning: The RPROP Algorithm”, 06 August 2002,

DOI: 10.1109/ICNN.1993.298623

[7] Hong Cai, Yanda Li, “Fuzzy neural network optimization method based on

Hopfield networks”, January 1998.

[8] Seba Susan, Rohit Ranjan, Udyant Taluja, Shivang Rai, Pranav Agarwal

“Global-best optimization of ANN trained by PSO using the non-

extensive cross-entropy with Gaussian gain”, Soft Computing 2020

[9] Jiri Stastny, Vladislav Skorpil, “Designing Neural Networks using Genetic

Algorithms.” August 2007.

[10] Santosha Rathod, Amit Saha, Kanchan Sinha, “Particle Swarm

Optimization and its applications in agricultural research” April 2020.

[11] A. Mosca and G. D. Magoulas, “Adapting resilient propagation for deep

learning,” CoRR, vol. abs/1509.04612, 2015.

[12] W. D, “Stacked generalization,” Neural Networks, vol. 5, pp. 241–259,

1992.

[13] J. Heaton, “Encog java and dotnet neural network framework”, Heaton Re-

search, Inc., Retrieved on July 20 (2010) 2010.

[14] Sadegh Mirshekarian, Dusan Sormaz, “Machine Learning Approaches to

Learning Heuristics for Combinatorial Optimization

Problems”,https://doi.org/10.1016/j.promfg.2018.10.019.

[15] Fadlallah, S.O., Anderson, T.N. & Nates, R.J. “Artificial Neural Network–

Particle Swarm Optimization (ANN-PSO) Approach for Behaviour

Prediction and Structural Optimization of Lightweight Sandwich

Composite Heliostats”. Arab J Sci Eng 46, 12721–12742 (2021).

https://doi.org/10.1007/s13369-021-06126-0

[16] Agnes Lydia, Sagayaraj Francis, “A Survey of Optimization Techniques

for Deep Learning Networks”, May 2019, DOI: 10.35291/2454-

9150.2019.0100

[17] Thomas Ragg, Heinrich Braun, Heiko L, “A Comparative Study of Neural

Network Optimization Techniques”, February 1997, DOI: 10.1007/978-

3-7091-6492-1_75

[18] Trần Ngọc Hà, Nguyễn Thanh Thủy, “The backpropagation neural

network for modelling”, March 2016, DOI: 10.15625/1813-

9663/14/1/7879

[19] Yang Meng, Hosahalli S. Ramaswamy, “Neural Networks and Genetic

Algorithms”, December 2008, DOI:10.1201/9781420061420.ch10

[20] Gursel Serpen, Joel Corra, “Training Simultaneous Recurrent Neural

Network with Resilient Propagation for Static Optimization” June 2022,

International Journal of Neural Systems 12(3-4):203-18, DOI:

10.1142/S0129065702001199.

[21] Riedmiller, M. and Braun, H., 1993. “A direct adaptive method for faster

backpropagation learning”: The RPROP algorithm. In Neural Networks,

1993., IEEE International Conference on (pp. 586-591). IEEE

[22] Garro, Beatriz A, Vázquez, Roberto, “Designing Artificial Neural
Networks Using Particle Swarm Optimization Algorithms”, 2015/06/29
https://doi.org/10.1155/2015/369298.

[23] Cao Li; Xiaoyu Liu , “An improved PSO-BP neural network and its
application to earthquake prediction” 28-30 May 2016, DOI:
10.1109/CCDC.2016.7531576

Partha Sutradhar1 is a graduate

student from American International

University - Bangladesh. Currently,

He is working as a Full-Time

Software Engineer in a R & D Sector.

He is also looking for a post-

graduation degree in Software

Engineering. He is specialized in

System Architecture, Deep Learning and Embedded System.

His region of interest includes Artificial Intelligence,

Computer Vision, Automation, IoT, Neural Network

Optimization, Image Processing and, Embedded Systems.

Victor Stany Rozario2 completed

B.Sc. in Computer Science &

Engineering and M.Sc. in Computer

Science from American International

University-Bangladesh, Dhaka

Bangladesh. Currently he is working

as an Assistant Professor in the

Department of Computer Science

under the Faculty of Science and Technology, AIUB. His

current research interest include Data Science, Data Mining,

Intelligent Systems, Machine Learning, Deep learning, Web

Mining and Human Computer Interaction.

AJSE Volume 21, Issue 2, Page 98 - 109 Page 109

