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Abstract—The Meta-heuristic and Heuristic algorithms have been 

introduced for deep neural network optimization in this paper. 

Artificial Intelligence and the most used Deep Learning methods 

are getting popularity in these days, thus we need faster 

optimization strategies for finding more accurate results in the 

future. Neural Network Optimization with Particle Swarm 

Optimization, Backpropagation (BP), Resilient Propagation 

(Rprop), and Genetic Algorithm (GA) have been used for 

numerical analysis of different datasets and compared with each 

other to find out which algorithms work better for finding optimal 

solutions by reducing training loss. Meta-heuristic algorithms GA 

and PSO are higher-level formulas and problem-independent 

techniques that may be used for a diverse number of challenges. 

The characteristic of heuristic algorithms has extremely specific 

features that vary depending on the problem. The conventional 

backpropagation (BP) based optimization, genetic algorithm, 

particle swarm optimization, and resilient propagation (Rprop) 

are all fully presented, and how to apply these procedures in 

artificial deep neural networks optimization is also thoroughly 

described. Applied numerical simulation over several datasets 

shows that the Meta-heuristic algorithm particle swarm 

optimization and also the genetic algorithm performed better than 

the conventional heuristic algorithm like backpropagation and 

resilient propagation over these datasets. Evaluation of these 

algorithms was done based on training epoch and their error 

convergence. 

Index Terms— Artificial Neural Networks, Resilient 

Propagation (Rprop), Particle Swarm Optimization (PSO), 

Genetic Algorithm (GA), Backpropagation (BP), Meta-Heuristic 

Algorithm, Heuristic Algorithm. 

I. INTRODUCTION

 here has been a significant amount of growth in Artificial 

Intelligence, Machine Learning, and Reinforcement 

Learning, and Deep Neural Network have been seen during the 

earlier few decades. Therefore, we need faster learning and 

optimization algorithms for better and more efficient 

computational benefits. We have selected Particle Swarm 

Optimization, Genetic Algorithm (GA), and Backpropagation 

(BP) and, Resilient Propagation (Rprop) algorithms for 

research work.  
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Especially, Neural Network is also a bio-inspired based 

Artificial Neural Network which consists of many dense layers 

and each layer has a set of neurons called nodes, synapses, and, 

biases. Artificial Neural Network learns by minimizing the cost 

of the network predicted by the neural network. For this 

purpose, we need to alter the weights in such a manner that the 

weights in the neural network provide better and more accurate 

prediction, and to update these weights we can use meta-

heuristic and heuristic algorithms to minimize the cost of the 

network. Most meta-heuristic systems are generic and can be 

functional to a diverse range of problem sets, whereas heuristic 

methods are often created for a specific array of problems. Here, 

we are going to compare generic bio-inspired algorithms known 

as Particle Swarm Optimization and Genetic Algorithm (GA) 

with application-specific algorithms like Backpropagation (BP) 

and Resilient Propagation (Rprop). 

Neural Networks are prediction-based computing methods 

inspired by the nervous systems of our biological brain and are 

now applicable in most high-level intelligence system 

designing [1]. The neural network learns from numerous input 

patterns from the datasets and updates the synaptic connection 

weights for achieving the accurate and expected output [1]. 

Neural Network gets the input and then feeds it forward through 

neurons to the output layer. Then, the output layer produces the 

result, if the result is not expected then we need to update the 

synaptic weights vectors for the expected result.  There are 

several algorithms used in the development of updating the 

weights for better performance. Traditionally, Backpropagation 

(BP) algorithm is used. This paper validates some of the bio-

inspired algorithms named meta-heuristic algorithms that can 

achieve better performance than application-specific 

Backpropagation and Resilient Propagation which is a heuristic 

algorithm. There is some implication of a meta-heuristic 

algorithm. Implications of the meta-heuristic algorithm are, that 

it gets stuck in local minima and stays there for quite some time 

which makes the training period lengthy. 

II. LITERATURE REVIEW

This is the era of Artificial Intelligence that is governing the 

world with the power of Neural Networks that has been 

reversed and engineered from our biological brain 

functionality. Therefore, it is very much crucial to optimize the 

network learning capacity. There are a lot of algorithms that can 

optimize neural network weights.  
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Jiri Stastny [9] et al proposed a scheme of a simpler network 

configuration for the learning process of neural networks. They 

have designed a Topology for Artificial Neural networks for 

effective learning using the Genetic Algorithm. The genetic 

Algorithm looks for precise settings of neural network weights 

and if fails it practices minimization of its given function [9]. A 

stochastic heuristic approach is recognized as the Genetic 

algorithm. Adaptive and evolutionary pathways in living 

organisms encourage genetic algorithms [9]. The major 

applications that use Genetic Algorithms are in analytical 

problem solutions domain which are unknown or extremely 

complicated. A genetic algorithm allows us to get to a solution 

to a numerical problem that is not known using evolutionary 

use cases [9]. 

 

Alan Mosca [11] et al proposed Adapting Resilient Propagation 

for Deep Learning by using an adjustment of the Resilient 

Propagation (Rprop) that included the standard Rprop steps 

with a special dropout technique. They have applied the 

methods of Deep Neural Networks as individual modules and 

ensembles in formulations [11]. Dropout [11, 12] is a 

regularization process in which just a random subset of nodes 

in the network are updated during each training iteration, but 

the entire network is used at the final evaluation. They have 

compared their Adapting techniques with Stochastic Gradient 

Descent, unmodified Resilient Propagation, and modified 

Resilient Propagation to speed up the training process [11]. 

 

Garro, Beatriz A et al [22] proposed a method that designs an 

Artificial Neural Network using PSO algorithms automatically. 

The goal of these strategies is to generate all three major 

components of an ANN simultaneously moment: synaptic 

weights, connections or architecture, and transfer operations for 

every neuron. To evaluate the efficiency of each approach and 

discover the optimum design, eight different fitness functions 

were offered. Furthermore, the proposed approach is associated 

with those created by manually utilizing the recognized Back-

Propagation and Levenberg-Marquardt Learning Algorithms 

[22]. Finally, the method's accuracy is evaluated using a variety 

of nonlinear traditional classification challenges. 

 

Researchers are trying to combine meta-heuristic and heuristic 

algorithms to predict some big events like earthquakes and 

natural disasters. PSO-BP combined structure has been 

introduced to predict big natural disasters like earthquakes [23]. 

III. DEEP NEURAL NETWORK OPTIMIZATION 

Fundamentally, Deep Neural Network is an Artificial Neural 

Network consisting of many dense layers and each layer 

contains a set of neurons, synapses, and biases. This allows 

computational models with several layers of nodes to learn 

multiple degrees of abstraction for data representations. A deep 

Neural Network is set with many layers in this way as shown in 

Fig. 1. There are a lot of algorithms that are capable of 

optimizing the weights of a simple neural network [16, 17]. 

 

 
Fig. 1. Deep Neural Network 

In the field of neural network optimization, there has already 

been a lot of improvement. Neural Networks have vastly 

enhanced the region in the detection of objects, pattern 

recognition, simulation, and predictions. In Neural Network we 

take inputs first, forward propagate the input values through the 

network and get outputs in the output layer which is the last 

layer of the Neural Network then we compare outcome values 

with target values and calculate the loss. So, the loss of the 

neural network determines how wrong a prediction was so it 

takes as input the predicted outputs and compares them with 

ground truth outputs. If those two things are extremely far 

away, the loss will be quite great. However, the nearer these 

two things are to each other than the lower the loss will be and 

the more accurate the model will be. Therefore, we should 

minimize the loss we want to incur if we want to predict 

something as close as possible to the ground truth. There are 

many loss functions like cross-entropy, log-loss, Mean Squared 

Error, Root Mean Squared Error (RMSE). 

 

A. Loss optimization: To use this loss function to train the 

weights of our neural network such that it can learn that 

problem well what we want to do is to find the weights of the 

neural network that will minimize the loss of our dataset.  

 

 
 

Fig. 2. Problem Search Space 

 

A deep Neural Network needs to update the weights of its 

network to reduce the cost or loss according to its loss function. 

Fig.2 represents that we can go through the search space to find 

out the optimal solution. 

 

𝑀𝑆𝐸 =
1

𝑁
 ∑ (𝑌𝑖 − �̂�1)

2𝑁
𝑖−1          (1) 
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Here, MSE represents Mean Squared Error and we are using 

this loss function to optimize the Artificial Neural Network 

using the preferred algorithms. In this research context, we have 

described the BP, PSO, GA, and Rprop algorithm for 

optimizing the neural network weights. This algorithmic 

approach could lead us to find which one is better for Neural 

Network optimization. 

 

IV. PARTICLE SWARM OPTIMIZATION 

Algorithm Particle Swarm Optimization is inspired by the 

social behavior of biological environmental life form process. 

It is an evolutionary algorithm invented by Eberhart and 

Kennedy in 1995. It is an iterative method that optimizes a 

problem by improving its particle position. It has several 

particles as a population and every individual particle in the 

population has the neural network synaptic weight values. The 

algorithm’s work is to move particles around the problem 

search space using the position and velocity of the particles and 

find the optimal solution in the iterative method [15]. 

 

 
 

 

Fig. 3. Neural Network & PSO Search Space 

 

Here, each particle in Particle Swarm Optimization holds the 

synaptic weight values of a neural network as position in search 

space and uses the position and velocity of the PSO algorithm’s 

hyperparameter to alter the position and velocity of each 

particle to exploration for the global optimum of the artificial 

neural network. This is an iterative method and after each 

iteration, the particle gets closer to the optimum of the neural 

network. Here, x is the position vector 𝑥𝑖
𝑛 =

𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, . . . , 𝑥𝑖𝑛, ) and velocity v vector 𝑣𝑖
𝑛 =

𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, . . . , 𝑣𝑖𝑛) .  Looking at the position vector and 

velocity vector n is the iteration for each of the particles and i is 

the responsible particle working on that n-th iteration. Below is 

the equation of particle swarm optimization search: 

 

 

𝑉𝑖𝑑
𝑛+1 = 𝑤𝑉𝑖𝑑

𝑛 + 𝑐1𝑟1 (𝑝𝑖𝑑
𝑛 − 𝑥𝑖𝑑

𝑛 ) + 𝑐2𝑟2(𝑝𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛 )      (2) 

 

 

𝑋𝑖𝑑
𝑛+1 = 𝑋𝑖𝑑

𝑛 + 𝑉𝑖𝑑
𝑛+1                                 (3) 

 

In equation 2. w is the inertia weight and  cognitive weight 

and  is social weight in this algorithm and r1 𝑟2 is a random 

value between 0 < r < 1 [4]. Local Best and Global Best particles 

take place to find the optimal solution for a neural network. The 

global best is where the best fitness is found and the local best 

is the particle amongst all the particle’s positions [10]. The 

neural network optimization happens and learns the best 

weights from the position of the neural network. In Fig. 3, we 

see that particle looks for the global optimum of the neural 

network and calls other particles to come to (Global Best) 

GBest particle because GBest holds the current best position of 

neural network weights and all other (Particle Best) PBest 

particles moves to GBest particle according to new velocity and 

position [15]. Again, in the next iteration, the Particle position 

changes due to velocity and randomness [15]. Therefore, the 

GBest Particle as known as Global Best in search space will 

eventually find the best global optimum position of the neural 

network. PSO algorithm is also an exploration algorithm 

because it searches around all the search space. We can 

integrate this algorithm for Neural Networks like the ANN-PSO 

model [15]. 

V. BACKPROPAGATION 

A basic Neural Network is made up of the input neurons, hidden 

units neurons, and output neurons. Neural Network is really 

good for non-linear predictions and generally used for the 

problem-specific dataset. Neural Network has two parts for the 

training phase, first Forward Propagation and then Backward 

Propagation. In Forward Propagation, the values go to input 

vector values and go through the network and each activation 

function produces an output for all the hidden layers. Then, the 

output layer gives an estimated result. If the result is not 

satisfied then we use backward propagation using loss 

calculated from the last layer and update the weights according 

to gradient-based optimization. We also use the momentum 

factor for faster optimization of neural networks in 

Backpropagation (BP). 

 

1. Forward Propagation 

First, the Phase of the Neural Network is to forward propagate 

the input vector to the hidden layer and generate outputs in the 

output layer. Each layer has neurons and every neuron has 

synaptic weight connected to the previous layer. Neuron work 

is to calculate the weighted sum from all the connected synaptic 

weights, plus adds bias 1, and then applies an activation 

function to generate output from that individual neuron. Below 

eq. 4 is the logistic function also known as the sigmoid function 

and eq. 5. is a derivative of a logistic function of eq. 4. 

 

𝑓(𝑥) =
1

1+𝑒 −𝑥
                (4) 

 

𝑓′(𝑥) = 𝑓(𝑥) ∗ (1 − 𝑓(𝑥))           (5) 

 

The whole idea of forwarding propagation is to feed forward 

the input vectors from the datasets then generate outputs and 

calculate the loss at the output layer. Then Backpropagation 

takes place to update the weights for optimizing the network to 

generate satisfied predicted outcomes and reduce the loss. 
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Fig. 4. Forward Propagation 

2. Backward Propagation 

The second, Phase is to update weights according to the 

calculated loss from the last layer of the artificial neural 

network using the gradient descent approach. Gradient Descent 

Optimization is also known as Backpropagation (BP) the main 

usage of the Backpropagation (BP) algorithm is to update 

weights to train the artificial neural network to learn from the 

dataset and make accurate predictions after training. Now, the 

main work is done in the last layer of the neural network which 

calculates the total loss of the neural network using a simple 

error function [18].  

 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑
1

2
 (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑜𝑢𝑡𝑝𝑢𝑡)2        (6) 

 

After calculating loss, synaptic weights are updated regarding 

the weighted error found from the last layer to the first layer. 

 

 
 

 

 

 

Fig. 5. Backward Propagation (Backprop) 

 

Here, looking at Fig. 5, we see that the total loss of the error is 

calculated at the last layer and then synaptic weights are 

updated according to a weighted error we have found using 

Parts of the gradient computation from one layer are 

reprocessed in the gradient computation for the preceding layer. 

Iteratively, the neural network becomes trained sufficiently to 

forecast accurately after a period of 10000 to 100000 iterations 

for forwarding and backward pass. 

 

∆𝑤𝑖𝑗 = (𝑛 ∗ (
𝜕𝐸

𝜕𝑤𝑖𝑗
)) + ( 𝑚𝑢 ∗ ∆𝑤𝑖𝑗

𝑡−1)      (7) 

 

 

Here, eq. 8 shows weights updates with momentum. 

Momentum increases the speed of finding the optimal result for 

the neural network [18]. 

VI. RESILIENT PROPAGATION 

Resilient Propagation is also known as the Rprop algorithm, an 

efficient new form of the Backpropagation (BP) algorithm. This 

algorithm is a direct alteration of the synaptic weight step based 

on the knowledge of the local gradient found while training. 

Rprop is a powerful gradient descent approach that 

approximates updates only depending on gradient signs. It 

stands for Resilient Propagation and is useful in a wide range of 

contexts since it dynamically optimizes the step-wise size for 

each weight independently. Many different types of algorithms 

depend on the magnitude of the gradient and signs to find the 

global minima [20]. It often works fine but it is not always a 

good option, some of the time works badly and does not contain 

the valuable information it needs. Using gradient magnitude to 

optimize weights becomes questionable [20]. Also using a 

settled learning rate to find the global minima fails. That’s why 

Resilient Propagation (Rprop) ignores gradient magnitude for 

better performance. Modern gradient descent variants use 

dynamically adapting step sizes for overcoming this problem. 

Resilient Propagation uses the positive and negative signs of the 

gradient to find the global optimal solution. Resilient 

Propagation algorithm, synaptic weights are updated by eq. 5 

[21]. 

 

𝑤𝑖
𝑡 = 𝑤𝑖

𝑡−1 − 𝑛𝑖
𝑡−1 ∗ 𝑠𝑔𝑛 (

𝜕𝐸𝑡−1

𝜕𝑤𝑖
𝑡−1)      (8) 

 

Here, 𝑛𝑖
𝑡  is the step size for the t-th iteration of the gradient 

descent and i-th weight. Where the sign of the partial derivative 

of the error concerning the corresponding weight is determined 

in the last step Using the given step size, we advance in the 

direction of descent. For adapting the step size for each iteration 

Resilient Propagation (Rprop) follows the formula for updating 

the scheme [6, 21], eq. 9. 

 

 

𝑛𝑖
𝑡 =

{
 
 

 
 min(𝜂𝑖

𝑡−1 ∗ 𝛼, 𝜂𝑚𝑎𝑥)  𝑖𝑓
𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡 ∗

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡−1 > 0

min(𝜂𝑖
𝑡−1 ∗  𝛽, 𝜂min)  𝑖𝑓

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡 ∗

𝜕𝐸𝑡

𝜕𝑤𝑖
𝑡−1 < 0

𝑛𝑖
𝑡−1     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (9) 

 

 

Here, α > 1 > β is the step size of the algorithm, and depending 

on α, β algorithm decides whether speed should be increased or 

decreased. The most accepted values of α and β are 1.2 and 0.5. 

Though Resilient Propagation (Rprop) works well in many 

scenarios, it is not quite good yet in finding solutions for more 

complex problems. 
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VII. GENETIC ALGORITHM 

A Genetic algorithm is an algorithm inspired by the course of 

natural selection. It is also known as a Meta-heuristic algorithm, 

above and beyond it is an evolutionary algorithm that is 

collected from natural behavior[19]. A genetic algorithm is 

used to solve high-quality problems solutions that are based on 

search and optimization of problems.  Genetic Algorithm (GA) 

uses population, mutation, crossover, and selection for 

optimization, and is also used in numerous search problems. We 

can use a Genetic Algorithm to optimize neural network 

synaptic weights to find the problem's best weights and reduce 

the total datasets' loss. Looking at Fig. 1 we see that, the 

artificial neural network has w1 to w21 synaptic weights, if we 

can find the best weights for any specified dataset then network 

prediction will be accurate.  

 

A genetic algorithm finds the best individual neural network 

from its population pool then it copies the same characteristic 

or trained weights to other networks. Here these individuals 

have been taken for getting more outcome variance so that the 

best individual can be different from the parent weights vector 

and still produce close to accurate of its ground truth value. 

 
Fig. 6. Genetic Algorithm and Neural Network 

 

The Genetic Algorithm (GA) algorithm has a population pool 

where a number of a chromosome are there and each 

chromosome has a gene. Chromosomes consist of genes in a 

genetic algorithm inspired by nature. Here, for the optimization 

of neural networks, we can use a genetic algorithm [19]. Each 

chromosome represents a neural network and every gene in 

chromosomes is denoted as weight. 

 

 
 

Fig. 7. Selection 

 

The genetic Algorithm (GA) selects the best two individual 

chromosomes according to the best fitness from the population 

pool for the crossover process. Parent 1 and Parent 2 

chromosomes have synaptic weights as genes in Fig. 7. 

 

 
 

Fig. 8. Crossover 

 

After that crossover happens, Parent 1 and Parent 2 exchange 

their genes and create new offspring from the two individual 

parents. Here, flip the coin happens when genes from 

chromosomes crossover to make a new individual [19]. 

 

 
Fig. 9. Mutation 

 

In the mutation part, synaptic weights values randomly change 

from some of the genes created from new offspring. Here, r1, 

r2, r3, and r4 are random values produced from a threshold for 

mutation. Now, the new offspring has its natural and individual 

character. Each chromosome in the population has gene values, 

we can set the values of synaptic weights in the chromosome as 

genes. Then, we calculate the fitness function of the neural 

network to check the total loss of the network. If the criteria of 

the fitness function meet essential requirements then we stop 

the iterative training of the genetic algorithm. When criteria do 

not meet the requirements of the fitness function then we select 

the two best individuals as parents from the population pool 

according to the best fitness and we use the crossover technique 

or mating to create new individuals from the parents by 

exchanging their genes [19]. To do that we can use the flip the 

coin technique as randomness. After that, we need to make the 

new individual different from the parents. For that, we can use 

mutation to change some of the synaptic weights as genes 

randomly from the chromosome. Thus, a new offspring is 

created. Then, iteratively we insert the offspring into the 

population pool for again evaluating the fitness function. In this 

iterative way, we can find the best synaptic weights from the 

genetic algorithms by finding the lowest F(x) error meaning the 

mean squared error for neural network training. Each iteration 

is also known as generation in a Genetic Algorithm [19]. 

VIII. RESEARCH METHODOLOGY 

The Research Methodology has two distinct types of points of 

view. 1) Data Acquisition and 2) Applying Algorithms. Using 

the encog machine learning library [13], we see the results of 

the algorithms that are described in the paper which include 

Resilient Propagation, Particle Swarm Optimization, and 

Backpropagation also a customized version of the Genetic 

Algorithm which was capable of optimizing Neural Networks 

weights and also see the induced effects. Here, we have used 

the epoch and saw how the resource utilization comes into 
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functioning and gives us the training loss results. It is also 

possible to calculate training time by averaging each iteration 

but we are going to use the epoch as an outcome. We have used 

the Graph Tool known as matplotlib and NumPy to see the 

effects in the classification process.  

1.   Dataset Acquisition 

Datasets were acquired from the Kaggle. These datasets are 

open source and good for the classification process. Besides, we 

can make use of these datasets to make a strong understanding 

of the neural network optimization process. There is a total of 

713 observations for this research that is included here to see 

the induced effects. 

A. Xor gate 

Xor or exclusive OR gate is a simple logic gate that only 

produces true results when its inputs are different. It is the 

standard approach for an artificial neural network to see if it can 

draw the separation line to classify the logical gate and is 

capable of doing other classification tasks. This has two input 

variables with one targeting output variable with four 

observations. 

 

B.  Iris dataset 

The Iris Flowers Dataset is a simple dataset containing 150 

observations of flower dimensions. It has been used to identify 

flower species based on their dimensions. The dataset has four 

features containing the width and length of petals, sepals, and 

three classes Iris Setosa, Iris Virginica, and Iris Versicolor. 

C.  Sonar dataset 

The Sonar Dataset is concerned with determining if the entity 

is a Mine (M) or a Rock (R) based on the strength of sonar 

returns at multiple viewpoints. This dataset contains 208 

observations with 1 output variable and 60 input variables. The 

output variable determines if the object is rock or mine. 

D.  Ionosphere dataset 

The Radar System yields pointing free electrons found in the 

ionosphere, and the Ionosphere Dataset demand the forecasting 

of weather behavior in the atmosphere. It's a two-class binary 

classification problem. There are 34 input variables and 1 

outcome variable and found 351 observations were. Besides, 

the total of observations per class is not evenly distributed. The 

output variable determines if the atmosphere is Good (G) or 

Bad (B). 

 

2. Applying Algorithms  

We have used 1 hidden layer with 10 Neurons in the XOR 

dataset and Iris dataset and 2 hidden layers with 10 neurons for 

the Sonar dataset and Ionosphere dataset because these two 

datasets have a huge amount of input in the input layer of the 

Artificial Neural Network. Hidden Layer uses Sigmoid 

Activation Function. We have used Encog Machine Learning 

[13] to produce the training losses and also used JFreeChart for 

implementing the Graph. For the Genetic Algorithm, we have 

used 500 population sizes as a default population pool of neural 

networks. In Fig.10, we are seeing the whole process of that we 

are applying a different algorithm for Artificial Neural Network 

weights optimization. Here, we have used Particle Swarm 

Optimization, Resilient Propagation, Genetic Algorithm, and 

Backpropagation algorithm in this paper. 

 

In this research paper, We have used the sigmoidal function for 

the neural network activation function. In Fig. 10. We have 

prepared the process in phases. In the first phase, we have 

prepared the data for neural network input and output so that it 

can fit easily in the neural network input layer and output layer 

for each dataset because each dataset's input and output look 

different from the other dataset. After the data preparation 

phase, the algorithm selection phase is started. Here, we have 

to select an algorithm to train the neural network to get the 

training outcome. Next, the training phase started and after 

1000 epochs, we stop the training to get to the output phase. In 

the output phase, we store the neural network loss. This process 

is again repeated until all of the algorithms are used on the 

provided datasets. In this way, we can find the results of the 

neural network losses. The process shows that we can optimize 

Neural Networks with different algorithms like Bio-Inspired 

PSO and GA and application-specific algorithms BP and 

Rprop. We have used four datasets to see the results of these 

algorithms that can reduce the training loss of neural networks 

and provide an optimal solution.  

 

 
 

 

Fig.10. Training Neural Network with Algorithms 

 

Besides, we have used the matplotlib library to implement 

multiple training losses in one graph. This type of work gives 

us a visual idea. Nowadays, we are seeing a lot of growth using 

artificial intelligence that uses a neural network. Therefore it is 

very important for us to provide a more sophisticated algorithm 

or optimization technique that leads us to accurate results. 

IX. RESULTS AND ANALYSIS 

In this section, the findings and performed simulations are 

analyzed by training losses or errors of the Artificial Neural 

Network by using meta-heuristic and heuristic algorithms that 

are described in the paper. Observing the training error 

reductions while training Neural Network will give us the best 
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optimal solution for each dataset we are using here. The lowest 

the training loss value higher the accuracy will be. This case 

study provides a comparison between the meta-heuristic 

algorithm and heuristic algorithm using the xor gate, iris 

dataset, sonar dataset, and ionosphere dataset. In this study, we 

have found the particle swarm algorithm was better in all the 

cases and also produced much better results than other 

algorithms. The results that are found while performing the 

algorithmic approach for Artificial Neural Network 

optimization are given below: 

 

1) Here, we going to see the effects of the training error results 

of each algorithm described in the paper applied in simple the 

XOR dataset. Each of the algorithms will try to adapt the weight 

to minimize the loss function of the neural network. 

 

Here, we have used the Backpropagation algorithm in the XOR 

dataset to reduce the loss or training error of the artificial neural 

network. Fig. 11 shows the convergences of neural networks for 

the xor gate. 

 
 

Fig.11 Applied Backpropagation (BP) on XOR Gate 

 

The Resilient technique was applied to the XOR dataset to 

reduce the artificial neural network's loss or training error. 

Fig.12 illustrates the convergences. 

 

 
Fig.12 Applied Resilient Propagation (Rprop) 

 on xor gate 

 

In Fig.12, we have applied the Particle Swarm Optimization 

algorithm which is also known as PSO an evolutionary 

algorithm to reduce the neural network error function loss. 

After applying the algorithm network compellingly reduces in 

less than a few epochs. 

 

 
Fig.13 Applied Particle Swarm Optimization 

on xor gate 

Genetic Algorithm (GA) with Artificial Neural Network 

combined structure shows that it has learned the problem set 

very quickly and found the optimal solution. Thus, we are 

seeing a close to zero figures graph in Fig.14.  

 

 
Fig.14 Applied Genetic Algorithm (GA) on xor gate 

 

Table. 1 

Epoch 
Training Loss 

BP Rprop GA PSO 

0 0.32482 0.81928 0.24622 0.24349 

100 0.00902 0.00054 0.11366 0.00048 

200 0.00226 0.00021 5.0E-41 0.00034 

300 0.00133 0.00013 5.0E-41 0.00027 

400 0.00089 0.00011 5.0E-41 0.00014 

500 0.00065 0.00001 5.0E-41 0.00012 

600 0.00051 0.00008 5.0E-41 0.00009 

700 0.00041 0.00007 5.0E-41 0.00009 

800 0.00034 0.00006 5.0E-41 0.00009 

900 0.00029 0.00006 5.0E-41 0.00006 

1000 0.00026 0.00005 5.0E-41 0.00005 

 

Also, Table 1 contains all the training losses found while we are 

training the neural network for the xor gate. 
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Fig.15. Training Losses of xor gate 

 

By looking at Table.1, we have found that the Evolutionary 

algorithms Genetic Algorithm and Particle Swarm 

Optimization algorithm performed better than the rest of the 

algorithms. The meta-Heuristic algorithm achieved faster 

convergence in the XOR gate classification problem while BP 

and Rprop algorithms took more epochs in the process of 

reducing the neural network loss. Noticeably, we are seeing that 

GA and PSO in Fig.15 have the lowest error rate in fewer 

amount epochs. 

 

2) Now, we are going to use the Iris dataset to see the 

convergence speed of each algorithm that is provided to see and 

analyze the finding results. Also, closely look at the graphs to 

then compare them with other algorithms. The lowest the value 

of loss higher the accuracy will be. 

 

Here, we have again applied Backpropagation (BP) to the 

standard Iris dataset to see the induced effects of the artificial 

neural network loss. In Fig.16 we are seeing that the error of the 

network is slowly decreasing in curve shape which is a good 

indication of this algorithm. 

 

 
Fig.16 Applied Backpropagation (BP) on the iris dataset 

 

After applying Resilient Propagation (Rprop) in Fig.17 

algorithm we have found that the Iris dataset was affectedly 

learned by the neural network by reducing error quickly. Thus, 

it has been shown that this algorithm is better than 

Backpropagation (BP) for this dataset. 

 

 
 

Fig.17 Applied Resilient Propagation (Rprop) on Iris 

 

Besides, we have also used the Particle Swarm Optimization 

algorithm for faster convergence of neural networks to learn the 

Iris dataset. The results provided in Fig. 18 show that the 

algorithm found the optimal solution for this dataset faster than 

other algorithms. Looking at Table 2, we are seeing that in the 

first to last epoch, this Particle Swarm Optimization (PSO) bio-

inspired algorithm found the optimal solution while the other 

algorithm was still in the learning process. In Fig. 19, we have 

shown that PSO is giving more promising results than the other 

algorithms. 

 

 
Fig.18 Applied Particle Swarm Optimization 

on iris dataset 

 

Below is Fig.19, which is containing the losses of neural 

networks that were applied to the Iris dataset using the Genetic 

Algorithm (GA). 

 

 
Fig.19 Applied Genetic Algorithm (GA)  

on iris dataset 

AJSE Volume 21, Issue 2, Page 98 - 109 Page 105



 

Table.2 

Epoch 
Training Loss 

BP Rprop GA PSO 

0 0.96979 1.27222 0.19266 0.24426 

100 0.47745 0.04830 0.07236 0.04157 

200 0.14954 0.03545 0.07236 0.03715 

300 0.11673 0.03246 0.07236 0.03268 

400 0.11151 0.03022 0.07236 0.02896 

500 0.11125 0.02858 0.03909 0.02761 

600 0.11129 0.02709 0.03909 0.02617 

700 0.11121 0.02593 0.03909 0.02437 

800 0.07309 0.02492 0.03909 0.02347 

900 0.05370 0.02409 0.02896 0.02328 

1000 0.02372 0.02338 0.02896 0.02260 

 

 

Here in Table 2, also includes all of the training losses 

discovered while training the artificial neural network for the 

iris dataset for finding the optimal solution. 

 

 

 
 

Fig.20. Training Losses of the iris dataset 

 

In the training process of the Artificial Neural Network of 

Iris dataset Fig.20 shows the promising results that the 

evolutionary algorithms are better at finding the optimal 

solution for this dataset. Nevertheless, evolutionary or meta-

heuristic algorithms are bound to give sufficiently better results 

to an optimization problem where the information is not clean 

and incomplete. 

 

3) At this time, we will utilize the Sonar dataset to examine the 

convergence speed of each of the algorithms that have been 

presented, as well as to examine and analyze the findings. 

 

For this Sonar dataset, we have used the Backpropagation 

(BP) algorithm and in Fig. 21 we are seeing the training error is 

reducing correspondingly. 

 

 
Fig.21. Applied Backpropagation (BP)  

on sonar dataset 

 

In Fig. 22, the algorithm Resilient Propagation was used to 

optimize the loss function on the Sonar dataset. Besides, we are 

seeing that it has reduced the loss much faster than the 

Backpropagation (BP) algorithm. 

 
Fig.22. Applied Resilient Propagation (BP)  

on sonar dataset 

 

Besides, we are also getting efficient results after applying 

Particle Swarm Optimization for the Sonar dataset. Here, the 

Meta-Heuristic algorithm Particle Swarm Optimization (PSO) 

got very prominent results where over the Rprop algorithm we 

used earlier. In Fig. 23 we are seeing the training loss which 

was conducted during the training period. Also, this algorithm 

provided a much quicker training error than the other algorithm. 

 

 
Fig.23. Applied Particle Swarm Optimization  

on sonar dataset 
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In Fig.24, we have again used the Genetic Algorithm to see 

the induced effects after applying the training to the Sonar 

dataset. Here, we can see the training loss. 

 

 
Fig.24. Applied Genetic Algorithm (GA) 

on sonar dataset 

 

Table. 3 

Epoch 
Training Loss 

BP Rprop GA PSO 

0 0.25506 0.27759 0.24227 0.24034 

100 0.24473 0.08154 0.12595 0.11811 

200 0.23363 0.04310 0.12283 0.08703 

300 0.21193 0.03778 0.12283 0.08024 

400 0.18122 0.02885 0.12283 0.07476 

500 0.15584 0.02885 0.12283 0.06263 

600 0.13774 0.02885 0.11249 0.04180 

700 0.12481 0.02885 0.10939 0.03508 

800 0.11536 0.02885 0.10939 0.03046 

900 0.10813 0.02885 0.10939 0.02841 

1000 0.10203 0.02885 0.10939 0.02557 

 

Nevertheless, all of the training losses discovered during 

training the artificial neural network for the Sonar dataset for 

finding the optimal solution are included in Table 3 is shown. 

 

 
Fig. 25. Training Losses of sonar dataset 

 

Fig.25 displays hopeful results from the training phase of the 

Artificial Neural Network of Ionosphere dataset, indicating that 

evolutionary algorithms are better at finding the ideal solution 

for this dataset.  

 

4) Besides, we will look at the implications of the training error 

findings of each approach given in the study on the Ionosphere 

dataset in this section. Each method will attempt to adjust the 

weight to reduce the neural network's loss function. 

 

In this context, we have applied the Backpropagation (BP) 

algorithm to the Ionosphere dataset. Below Fig.26 contains all 

the training errors. This algorithm training loss has a curved 

shape in the Graph. 

 
Fig.26. Applied BP on the ionosphere 

Moreover, we have again used the Resilient Propagation 

(Rprop) algorithm on the Ionosphere dataset. In Fig. 27, we 

have shown the training losses found while training Artificial 

Neural Network for the Ionosphere dataset. 

 

 
Fig.27. Applied Resilient Propagation (Rprop) 

on ionosphere dataset 

 

In Fig.28 after applying the Particle Swarm Optimization 

algorithm for the Ionosphere dataset the training loss graph has 

been shown. 

 
Fig.28. Applied Particle Swarm Optimization  

on ionosphere dataset 
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The training loss graph for the Ionosphere dataset is given in 

Fig.28 after using the Genetic Algorithm for Neural Network. 

The Graph shows that the loss of the training got stuck for some 

time in epoch 100-700 and again regain reducing the training 

losses. 

Fig.29. Applied Genetic Algorithm (GA) on ionosphere 

dataset 

Table. 4 

Epoch 
Training Loss 

BP Rprop GA PSO 

0 0.29415 0.27756 0.20044 0.22245 

100 0.15070 0.00868 0.04675 0.07281 

200 0.09685 0.03930 0.04675 0.03868 

300 0.07349 0.00901 0.04675 0.02386 

400 0.06121 0.01234 0.04675 0.01787 

500 0.05336 0.03443 0.04675 0.01420 

600 0.04617 0.02280 0.04675 0.01248 

700 0.03943 0.01739 0.04675 0.01086 

800 0.03419 0.01675 0.03185 0.01000 

900 0.03021 0.01140 0.03185 0.00914 

1000 0.02708 0.01140 0.03185 0.00861 

In Table. 4, there are a lot of training losses we are seeing but 

the table shows that Particle Swarm Optimization is better at 

reducing the training losses. Hence, Particle Swarm 

Optimization provided the best optimal solution in this context. 

Fig.30. Training Losses of Ionosphere dataset 

The results are good when applied to bio-inspired algorithms 

like Particle Swarm Optimization. But Genetic algorithm did 

not produce good results on the Ionosphere dataset. 

Here, we have used four datasets that include the XOR gate, 

Iris dataset, Sonar dataset, and Ionosphere dataset. Particle 

Swarm Optimization was better in three datasets named Iris, 

Sonar, and Ionosphere. Besides, the Genetic Algorithm has 

gained a lot of training loss in the XOR gate. Both algorithms 

are bio-inspired whereas the other algorithms were application-

specific like Backpropagation (BP) and Resilient Propagation 

(Rprop). Hence, the Particle Swarm Optimization and also 

Genetic Algorithm were not application-specific but this 

algorithm produced good results in optimizing the weights of 

the Neural Network. In the research paper, after getting training 

loss results, we find that the evolutionary bio-inspired algorithm 

Particle Swarm Optimization was better and it is also a meta-

heuristic algorithm. 

X. DISCUSSION

In this case study research paper, we have discussed Deep 

Neural Network Optimization with meta-heuristic and heuristic 

algorithms. We have also used bio-inspired algorithms Genetic 

algorithm which works by the course of natural selection and 

also Particle Swarm Optimization. Besides, there were also 

application-specific algorithms like Backpropagation and 

Resilient Propagation respectively. We have compared four 

datasets applying these application-specific and Bio-Inspired 

algorithms by looking at the convergence meaning reducing the 

loss of the neural network. The Particle Swarm Optimization 

algorithm produced the lowest training loss meaning it has the 

highest probability of getting the highest accuracy respectively. 

Lower training loss means higher accuracy. Therefore, we have 

seen that bio-inspired algorithm particle swarm optimization is 

producing the optimal solution faster and more accurately. In 

this paper, we have included all the documents that relate to 

Meta-Heuristic and Heuristic algorithms. 

XI. CONCLUSION

The motivation of this research is to highlight bio-inspired 

and application-specific algorithm performance. To optimize a 

loss function these meta-heuristic algorithms like particle 

swarm optimization can be used because of their computational 

efficiency also particle swarm optimization and genetic 

algorithms are evolutionary algorithm which is inspired by 

living organisms that reflects natural behavior. Neural Network 

is a bio-inspired algorithm that is collected from the behavior 

of nature and now it is used by almost every field. Therefore it 

is crucial to use an optimization algorithm that is reversed 

engineered from nature and also has computational efficiency. 

If we can utilize the nature-inspired algorithm more, we will 

have a more robust structured algorithm that will provide a 

decent amount of performance. We found that the meta-

heuristic algorithm PSO was better in this case study. We used 

the Genetic algorithm and the Particle Swarm Optimization 

algorithm as bio-inspired algorithms and on the other hand, we 

have used the application-specific algorithms Backpropagation 

and Resilient Propagation to find the optimal solution for the 

dataset that we have compared here. Nevertheless, we have also 

described how this algorithm works with Artificial Neural 

Network Optimization techniques. In conclusion, we have 

come to a solution that the bio-inspired algorithm Particle 

Swarm Optimization was better in all of the case studies. 
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