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     Abstract− Fuzzy differential equation models are 

suitable where uncertainty exists for real-world 

phenomena. Numerical techniques are used to provide 

an approximate solution to these models in the absence 

of an exact solution. However, existing studies that 

have developed numerical techniques for solving 

FIVPs possess an absolute error accuracy that could be 

improved. This is as a result of the low order and non-

self-starting properties of the developed numerical 

techniques by previous studies. For this reason, this 

study, develops an Obrechkoff-type two-step implicit 

block method with the presence of second and third 

derivative for the numerical solution of first-order 

nonlinear fuzzy initial value problems. The 

convergence properties for the proposed block method 

are described in detail. Then the proposed method is 

adopted to solve first-order nonlinear fuzzy initial 

value problems with triangular and trapezoidal fuzzy 

numbers. The obtained results indicates that the 

proposed method effectively solves first-order 

nonlinear fuzzy initial value problems with better 

accuracy. 

 Index Terms−Fuzzy Initial Value Problem, First-

Order, Nonlinear, Obrechkoff-type, Two-Step, Block 

Method, Second derivative, Third derivative 

I. INTRODUCTION

Fuzzy differential equations (FDEs) are a powerful 
tool for analysing uncertainty in mathematical 
models, and this is evident in the studies [1-2] who 
introduced the fuzzy derivative concept. 

Seikkala [3] defined the first-order FIVP as the 
form,  

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) 

 𝑦(𝑡0) =  𝑦0 ,   𝑡 ∈ [𝑡0, 𝑇]
(1) 

and various researchers have ventured in obtaining 
solutions to Equation (1) such as [4-7]. However, 
due to the complexity of the FDEs and presence of 
nonlinear terms, the exact solutions in certain cases 
are difficult and tedious to obtain. Therefore, 
numerical methods are introduced as an approximate 
approach to solving the FDEs. Many researchers 
developed numerical methods for the solution of 
Equation (1), and some recent studies include 
developed the Euler method [8-10]. The predictor–
corrector technique was explored in [11-13]. All 
studies aimed to obtain better accuracy for the 
solution of these equations. For this purpose, 
developed block methods for first-order FIVPs [14-
17]. The major drawbacks of these numerical 
approaches include having low order and not being 
self-starting but rather being implemented in 
predictor-corrector mode, which leads to 
computational complexity burden and low absolute 
error accuracy.  

One of the numerical techniques for obtaining 
approximate solutions for differential equations with 
good accuracy is the block method [18-23]. For this 
reason, this study develops block methods to solve 
the first order nonlinear FIVPs considered in this 
article. A novel feature was introduced to the block 
method in this article by developing the method as 
Obrechkoff-type. The Obrechkoff techniques are a 
unique set of methods for numerically 
approximating differential equations. The existence 
of higher derivatives in the approach distinguishes 
this family of methods [24].  Thus, to handle the 
shortcoming of existing studies, this article proposes 
a self-starting Obrechkoff-type two-step implicit 
block method with the presence of second and third 
derivative with higher order compared to 
conventional two-step block methods. The 
convergence properties of the proposed method 
using definition of consistency and stability of the 
block methods are investigated, and then the 
proposed method is applied to solve some nonlinear 
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FIVPS with initial conditions defined as both 
triangular and trapezoidal fuzzy numbers. The next 
section of this article defines some basic fuzzy 
theory preliminaries which are important to concept 
understanding. The third section of this article will 
show how the proposed method is derived while the 
next section discusses some basic properties of the 
block method. The fifth section will present the 
numerical examples and their results, and the last 
section conclude this work. 

II. PRELIMINARIES

This section recalls some basic definitions which 
will be adopted in this article. 

Definition 1: Triangular fuzzy number [25] 

Consider that three numbers (𝑎, 𝑏, 𝑐) ∈ ℝ3, 𝑎 ≤
𝑏 ≤ 𝑐.  Then the triangular fuzzy number, 𝜓(𝑡) is 
given as 

𝜓(𝑡; 𝑎, 𝑏, 𝑐) =

{

0      𝑖𝑓 𝑡 < 𝑎
𝑡 − 𝑎

𝑏 − 𝑎
 𝑖𝑓 𝑎 ≤ 𝑡 ≤ 𝑏

𝑐 − 𝑡

𝑐 − 𝑏
 𝑖𝑓 𝑏 < 𝑡 ≤ 𝑐 

0  𝑖𝑓 𝑡 > 𝑐

(2) 

The corresponding 𝛼 − 𝑙𝑒𝑣𝑒𝑙 set of 
triangular fuzzy numbers is denoted as 

[𝜓]𝛼 = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑐 − 𝛼(𝑐 − 𝑏)],  

𝛼 ∈ [0,1] 

(3) 

Definition 2: Trapezoidal fuzzy numbers [25] 

Consider that four numbers (𝑎, 𝑏, 𝑐, 𝑑) ∈ ℝ4, 𝑎 ≤
𝑏 ≤ 𝑐 ≤ 𝑑, then the trapezoidal fuzzy number 𝜓(𝑡) 
is given as 

𝜓(𝑡; 𝑎, 𝑏, 𝑐, 𝑑) =

{

0  𝑖𝑓 𝑡 < 𝑎
𝑡 − 𝑎

𝑏 − 𝑎
 𝑖𝑓 𝑎 ≤ 𝑡 < 𝑏

1  𝑖𝑓 𝑏 ≤ 𝑡 ≤ 𝑐
𝑑 − 𝑡

𝑑 − 𝑐
 𝑖𝑓 𝑐 < 𝑡 ≤  𝑑 

0  𝑖𝑓 𝑡 > 𝑑

(4) 

The corresponding 𝛼 − 𝑙𝑒𝑣𝑒𝑙 set of 
triangular fuzzy numbers is denoted as 

[𝜓]𝛼 = [𝑎 + 𝛼(𝑏 − 𝑎), 𝑑 − 𝛼(𝑑 − 𝑐)], 

 𝛼 ∈ [0,1] 

(5) 

Definition 3: Support of a Fuzzy Set [25] 

Support of a fuzzy set �̂� within the universal set 𝑇 is 
defined as, 

𝑆𝑢𝑝𝑝(�̂�) = {𝑡 ∈ 𝑇|𝜇𝐴(𝑡) > 0} (6) 

It contains all elements in 𝑇 which degree of 
membership of fuzzy element is greater than zero. 

Definition 4: α-Level (α-cut) [26] 

Consider that 𝜓 ∈ 𝑅�̌� , 𝛼 ∈ [0,1], define the α −
level set of fuzzy number denoted by [𝜓]𝛼 as,

[𝜓]𝛼 = {
{𝑡 ∈ ℝ| 𝜓(𝑡) > 𝛼}, 𝑖𝑓 𝛼 ∈ [0,1],

𝑐𝑙(𝑠𝑢𝑝𝑝 𝜓),      𝑖𝑓 𝛼 = 0,
(7) 

with its closed, bounded interval [𝜓(𝑡), 𝜓(𝑡)]. 𝜓(𝑡), 
𝜓(𝑡) are lower and upper bound of [𝜓]𝛼

respectively. 

Definition 5: Hukuhara differential [27] 

A function 𝑓: (𝑎, 𝑏) → 𝑅𝑓 is called Hukuhara
differentiable, if ℎ > 0 sufficiently small then H-
difference exist 𝑓(𝑡 + ℎ) ⊖ 𝑓(𝑡), 𝑓(𝑡) ⊖ 𝑓(𝑡 − ℎ) 
and there exist an element 𝑓′(𝑡) ∈  𝑅𝑓. Such that,

𝑙𝑖𝑚
ℎ→0

𝑓(𝑡 + ℎ) ⊖ 𝑓(𝑡)

ℎ
= 𝑙𝑖𝑚

ℎ→0

𝑓(𝑡) ⊖ 𝑓(𝑡 − ℎ)

ℎ
= 𝑓′(𝑡)

The 𝑓′(𝑡) fuzzy number is called Hukuhara 
derivative of 𝑓 at 𝑡. 

III. METHODOLOGY

Given that second-order FODE of the form defined 
in Equation (1) be a mapping, 

𝑓 ∶  ℛ𝑓  →  ℛ𝑓 

and 𝑦0 ∈ ℛ𝑓 with α − level set

(𝑦0)
𝛼 = ([ 𝑦(0, 𝛼), 𝑦(0, 𝛼)])

𝛼

  𝛼 ∈ [0,1]

The partition of the [0, 𝑇] has the set of grid points 

0 = 𝑡0 < 𝑡1 < 𝑡2 < 𝑡3 <,… ,< 𝑡𝑁−1 < 𝑡𝑁 = 𝑇

with exact solution as 

(𝑌(𝑡𝑛, 𝛼))
𝛼 = ([ 𝑌(𝑡𝑛, 𝛼), 𝑌(𝑡𝑛, 𝛼)])

𝛼
 (8)

and approximation solution also denoted as 

(𝑦(𝑡𝑛, 𝛼))
𝛼 = ([ 𝑦(𝑡𝑛, 𝛼),  𝑦(𝑡𝑛, 𝛼)])

𝛼
(9) 

at which points, ℎ = 𝑇−𝑡0

𝑁
, 𝑡𝑛 = 𝑡0 + 𝑛ℎ, 

0 ≤ 𝑛 ≤ 𝑁 
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The required form of the proposed method in first-
order form with second, and third derivative of  y  is 
stated below as, 

( 𝑦𝑛+𝜂)
𝛼

= ( 𝑦𝑛 +∑[∑𝛽𝑖𝑗𝜅 𝑦𝑛+𝑗
𝑖

2

𝑗=0

]

3

𝑖=1

)

𝛼

 𝑤ℎ𝑒𝑟𝑒 𝜂 = 1,2 

(10) 

By applying Taylor series expansions [28], 

(𝑦(𝑡 + ℎ; 𝛼))
𝛼
= (∑

ℎ𝑖

𝑖!
𝑦𝑖(𝑡; 𝛼)

𝑁

𝑖=0

)

𝛼

(11) 

to expand each term in Equation (10) using, 

(𝑦𝑛+𝑗)
𝛼
= 𝑦(𝑡𝑛 + 𝑗ℎ; 𝛼)

= (∑
(𝑗ℎ)𝑖

𝑖!
𝑦𝑖(𝑡𝑛; 𝛼) 

𝑛

𝑖=0

)

𝛼

, 𝑗 = 0,1,2 
(12) 

(𝑦𝑛+𝑗)
𝛼
= (𝑦(𝑡𝑛 + 𝑗ℎ))

𝛼
=

= 𝑦(𝑡𝑛; 𝛼) + 𝑗ℎ𝑦
′(𝑡𝑛; 𝛼) +

(𝑗ℎ)2

2!
𝑦′′(𝑡𝑛; 𝛼) +

(𝑗ℎ)3

3!
𝑦′′′(𝑡𝑛; 𝛼) + ⋯

where 𝛽𝑖𝑗𝜅 = 𝐴−1𝐷 with

A =

[

1 1 1 0 0 0 0 0 0
0 h 2h 1 1 1 0 0 0

0
h2

2!

(2h)2

2!
0 h 2h 1 1 1

0
h3

3!

(2h)3

3!
0

h2

2!

(2h)2

2!
0 h 2h

0
h4

4!

(2h)4

4!
0

h3

3!

(2h)3

3!
0

h2

2!

(2h)2

2!

0
h5

5!

(2h)5

5!
0

h4

4!

(2h)4

4!
0

h3

3!

(2h)3

3!

0
h6

6!

(2h)6

6!
0

h5

5!

(2h)5

5!
0

h4

4!

(2h)4

4!

0
h7

7!

(2h)7

7!
0

h6

6!

(2h)6

6!
0

h5

5!

(2h)5

5!

0
h8

8!

(2h)8

8!
0

h7

7!

(2h)7

7!
0

h6

6!

(2h)6

6! ]
 

, 

 D = 

[κh
(κh)2

2!

(κh)3

3!

(κh)4

4!

(κh)5

5!

(κh)6

6!

(κh)7

7!

(κh)8

8!

(κh)9

9!
]
𝑇

Equation (10) takes the form of 

( 𝑦𝑛+1)
𝛼 = ( 𝑦𝑛)

𝛼 +

(

[𝛽101𝑦
′
𝑛
+ 𝛽111𝑦

′
𝑛+1

+ 𝛽121𝑦
′
𝑛+2

] +

[𝛽201𝑦
′′𝑛 + 𝛽211𝑦

′′
𝑛+1

+ 𝛽221𝑦
′′
𝑛+2

] +

[𝛽301𝑦
′′′𝑛 + 𝛽311𝑦

′′′
𝑛+1

+ 𝛽321𝑦
′′′
𝑛+2

]

)

𝛼

(13) 

( 𝑦𝑛+2)
𝛼 = ( 𝑦𝑛)

𝛼 +

(

[𝛽102𝑦
′
𝑛
+ 𝛽112𝑦

′
𝑛+1

+ 𝛽122𝑦
′
𝑛+2

] +

[𝛽202𝑦
′′𝑛 + 𝛽212𝑦

′′
𝑛+1

+ 𝛽222𝑦
′′
𝑛+2

] +

[𝛽302𝑦
′′′𝑛 + 𝛽312𝑦

′′′
𝑛+1

+ 𝛽322𝑦
′′′
𝑛+2

]

)

𝛼

Hence obtaining the coefficients values of βijκ as

(𝛽101, 𝛽111, 𝛽121, 𝛽201, 𝛽211, 𝛽221, 𝛽301, 𝛽311, 𝛽321)
𝑇 =

(
5669

13440
,
8192

13440
,
−421

13440
,
303

4480
,
−560

4480
,
47

4480
,
169

40320
,
1024

40320
,
−41

40320
)𝑇

(𝛽102, 𝛽112, 𝛽122, 𝛽202, 𝛽212, 𝛽222, 𝛽302, 𝛽312, 𝛽322)
𝑇

= (
41

105
,
128

105
,
41

105
,
2

35
, 0,
−2

35
,
1

315
,
16

315
,
1

315
)𝑇

Substituting in Equation (13) gives the desired two-
step block method. 

( 𝑦𝑛+1)
𝛼 = ( 𝑦𝑛)

𝛼 + (
ℎ

13440
[5669𝑦′

𝑛
+

8192𝑦′
𝑛+1

− 421𝑦′
𝑛+2

] +
ℎ2

4480
[303𝑦′′

𝑛
− 560𝑦′′

𝑛+1
+

47𝑦′′
𝑛+2

] +
ℎ3

40320
[169𝑦′′′

𝑛
+

1024𝑦′′′
𝑛+1

− 41𝑦′′′
𝑛+2

])
𝛼

( 𝑦𝑛+2)
𝛼 = ( 𝑦𝑛)

𝛼 + (
ℎ

105
[41𝑦′

𝑛
+

128𝑦′
𝑛+1

+ 41𝑦′
𝑛+2

] +
2ℎ2

35
[𝑦′′

𝑛
−

𝑦′′
𝑛+2

] +
ℎ3

315
[𝑦′′′

𝑛
+ 16𝑦′′′

𝑛+1
+

𝑦′′′
𝑛+2

])
𝛼

Then the upper and lower solutions of the 
proposed method for the approximation 
solution of FIVPs is obtained from 
Equation (14) as 

(14) 
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( 𝑦𝑛+1)
𝛼

= ( 𝑦𝑛)
𝛼

+

(
ℎ

13440
[5669𝑦′

𝑛
+ 8192𝑦′

𝑛+1
− 421𝑦′

𝑛+2
])
𝛼

+

(
ℎ2

4480
[303𝑦′′

𝑛
− 560𝑦′′

𝑛+1
+ 47𝑦′′

𝑛+2
])

𝛼

+

(
ℎ3

40320
[169𝑦′′′

𝑛
+ 1024𝑦′′′

𝑛+1
− 41𝑦′′′

𝑛+2
])

𝛼

( 𝑦
𝑛+1

)
𝛼
= ( 𝑦

𝑛
)
𝛼
+

(
ℎ

13440
[5669𝑦

′

𝑛
+ 8192𝑦

′

𝑛+1
− 421𝑦

′

𝑛+2
])
𝛼

+

(
ℎ2

4480
[303𝑦

′′

𝑛
− 560𝑦

′′

𝑛+1
+ 47𝑦

′′

𝑛+2
])

𝛼

+

(
ℎ3

40320
[169𝑦

′′′

𝑛
+ 1024𝑦

′′′

𝑛+1
− 41𝑦

′′′

𝑛+2
])

𝛼

( 𝑦𝑛+2)
𝛼

= ( 𝑦𝑛)
𝛼

+

(
ℎ

105
[41𝑦′

𝑛
+ 128𝑦′

𝑛+1
+ 41𝑦′

𝑛+2
])
𝛼

+               

(
2ℎ2

35
[𝑦′′

𝑛
− 𝑦′′

𝑛+2
])

𝛼

+

(
ℎ3

315
[𝑦′′′

𝑛
+ 16𝑦′′′

𝑛+1
+ 𝑦′′′

𝑛+2
])

𝛼

( 𝑦
𝑛+2

)
𝛼
= ( 𝑦

𝑛
)
𝛼
+

(
ℎ

105
[41𝑦

′

𝑛
+ 128𝑦

′

𝑛+1
+ 41𝑦

′

𝑛+2
])
𝛼

+               

(
2ℎ2

35
[𝑦
′′

𝑛
− 𝑦

′′

𝑛+2
])

𝛼

+

(
ℎ3

315
[𝑦
′′′

𝑛
+ 16𝑦

′′′

𝑛+1
+ 𝑦

′′′

𝑛+2
])

𝛼

 

 (15) 
Hence Equation (15) represent the proposed 
method. The correctors of the block method, takes 
the form, 

(𝐴0𝑌𝑛+𝑘)
𝛼 = (𝐴1𝑌𝑛−𝑘 + ℎ[𝐵

0𝑌𝑛+𝑘
′ +

𝐵1𝑌𝑛−𝑘
′ ] + ℎ2[𝐶0𝑌𝑛+𝑘

′′ + 𝐶1𝑌𝑛−𝑘
′′ ] +

ℎ3[𝐷0𝑌𝑛+𝑘
′′′ + 𝐷1𝑌𝑛−𝑘

′′′ ])𝛼  
(16) 

𝐴0 = (
1 0
0 1

) ,  𝐴1 = (
0 1
0 1

) , 𝐵0 =

(

8192

13440

−421

13440
128

105

41

105

) ,  𝐵1 = (
0

5669

13440

0
41

105

),  

 𝐶0 = (

−560

4480

47

4480

0
−2

35

) ,  𝐶1 = (
0

303

4480

0
2

35

) , 𝐷0 =

(

1024

40320

−41

40320
16

315

1

315

) ,  𝐷1 = (
0

169

40320

0
1

315

),  

(𝑌𝑛+𝑘)
𝛼 = (

𝑦𝑛+1
𝑦𝑛+2

)
𝛼

, (𝑌𝑛−𝑘)
𝛼 =

(
𝑦𝑛−1
𝑦𝑛

)
𝛼

, ( 𝑌𝑛+𝑘
′ )𝛼 = (

𝑦′𝑛+1
𝑦′𝑛+2

)
𝛼

, ( 𝑌𝑛−𝑘
′ )𝛼 =

(
𝑦′𝑛−1
𝑦′𝑛

)
𝛼

, (𝑌𝑛+𝑘
′′ )𝛼 = (

𝑦′′
𝑛+1

𝑦′′
𝑛+2

)

𝛼

, (𝑌𝑛−𝑘
′′ )𝛼 =

(
𝑦′′

𝑛−1

𝑦′′
𝑛

)

𝛼

, ( 𝑌𝑛+𝑘
′′′ )𝛼 = (

𝑦′′′
𝑛+1

𝑦′′′
𝑛+2

)

𝛼

, ( 𝑌𝑛−𝑘
′′′ )𝛼 =

(
𝑦′′′

𝑛−1

𝑦′′′
𝑛

)

𝛼

  

 

IV. PROPERTIES OF PROPOSED METHOD 

This section will detail the convergence properties 
of the developed two-step second-third-derivative 
block method, following the given theorem and 
definitions.  

Theorem 1: [29] 

A block method is convergent iff it is consistent and 
zero-stable  

Definition 6:[30] 

A block method is consistent if it has order ρ ≥ 1. 

Definition 7: Zero-Stability [30] 

Block with matrix difference equation in the 
following form 

𝐴0�̂�𝑛+𝑘 = 𝐴
1�̂�𝑛−𝑘 + 𝐵

1�̂�𝑛−𝑘
′ +

𝐵2�̂�𝑛−𝑘
′′ +,… ,+𝐵(𝑚−1)�̂�𝑛−𝑘

(𝑚−1) +

ℎ𝑚[𝐶0�̂�𝑛+𝑘
𝑚 + 𝐶1�̂�𝑛−𝑘

𝑚 ] +

ℎ(𝑚+1)[𝐷0�̂�𝑛+𝑘
(𝑚+1) + 𝐷1�̂�𝑛−𝑘

(𝑚+1)] +

ℎ(𝑚+2)[𝐸0�̂�𝑛+𝑘
(𝑚+2) + 𝐸1�̂�𝑛−𝑘

(𝑚+2)]  

(17) 

Here �̂�𝑛+𝑘
(𝑑)

= (�̂�𝑛+1
(𝑑)
, �̂�𝑛+2

(𝑑)
, … , �̂�𝑛+𝑘

(𝑑)
)
𝑇
, and  �̂�𝑛−𝑘

(𝑑)
=

(�̂�𝑛−(𝑘−1)
(𝑑)

, �̂�𝑛−(𝑘−2)
(𝑑)

, … , �̂�𝑛
(𝑑)
)
𝑇

is zero-stable if the 
first characteristic polynomial takes form 

Ρ(Ψ) = det (ΨvA
0 − A1) (18) 

the root of Ρ(Ψ) = 0 satisfy the |Ψv| ≤ 1, v =
1,… , k. 

These definitions for linear multistep methods in 
crisp form is adopted to the proposed method for 
fuzzy initial value problems to prove the 
convergence properties for the proposed method.  

Order and Error Constant 

The linear operator associated with Equation (10) is 
defined as:  

AJSE Volume 22, Issue 2, Page 112 - 124 Page 115



𝐿([ 𝑦(𝑡), ℎ])𝛼 = ( 𝑦𝑛 −

∑ [∑ 𝛽𝑖𝑗𝜅  𝑦𝑛+𝑗
𝑖2

𝑗=0 ]3
𝑖=1 )

𝛼
  

(19) 

𝐿[ 𝑦(𝑡; 𝛼), ℎ] = 𝛣0 𝑦(𝑡𝑛; 𝛼) + 𝛣1ℎ 𝑦
′(𝑡𝑛; 𝛼)  

+𝛣2ℎ
2 𝑦′′(𝑡𝑛; 𝛼) + ⋯+ 𝛣𝜌ℎ

𝜌 𝑦𝜌(𝑡𝑛; 𝛼) +

𝛣𝜌+1ℎ
𝜌+1 𝑦𝜌+1(𝑡𝑛; 𝛼)  

The order of this method is z if 𝛣0 = 𝛣1 = ⋯ =
𝛣𝑧 = 0, 𝛣𝑧+1 ≠ 0 and Βz+1 is constant error.  

Expanding 𝑦𝑛+𝑗𝑖  in Equation (19) by means of 
Taylor series to get, 

𝛣0 = [
1 − 1
1 − 1

] = [
0
0
], 

𝛣1 =

[
 
 
 
 

1 −
1

13440
{5669(1) + 8192(1) − 421(1)}

2 −
1

105
{41(1) + 128(1) + 41(1)} ]

 
 
 
 

= [
0
0
] 

𝛣2 =

[
 
 
 
 
 

1

2!
−

1

13440
{8192(1) − 421(2)} −

1

4480
{303(1) − 560(1) + 47(1)}

22

2!
−

1

105
{128(1) + 41(2)} −

2

35
{1 − 1}]

 
 
 
 
 

= [
0
0
] 

𝛣3 =

[
 
 
 
 
 
 
 
 
 
 
1

3!
−

1

13440
{8192(

1

2!
) − 421(

22

2!
)} −

1

4480
{560(1) + 47(2)} −

1

40320
{169(1) + 1024(1) − 41(1)}

23

3!
−

1

105
{128 (

1

2!
) + 41(

22

2!
)} −

2

35
{−2} −

1

315
{1 + 16(1) + 1} ]

 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣4 =

[
 
 
 
 
 
 
 
 
 
 
 
1

4!
−

1

13440
{8192(

1

3!
) − 421(

23

3!
)} −

1

4480
{−560(

1

2!
) + 47(

22

2!
)} −

1

40320
{1024(1) − 41(2)}

24

4!
−

1

105
{128(

1

3!
) + 41(

23

3!
)} −

2

35
{−

22

2!
} −

1

315
{16(1) + 2}

]
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣5 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

5!
−

1

13440
{8192(

1

4!
) − 421(

24

4!
)} −

1

4480
{−560(

1

3!
) + 47(

23

3!
)} −

1

40320
{1024(

1

2!
) − 41(

22

2!
)}

25

5!
−

1

105
{128 (

1

4!
) + 41(

24

4!
)} −

2

35
{−

23

3!
} −

1

315
{16 (

1

2!
) +

22

2!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣6 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

6!
−

1

13440
{8192(

1

5!
) − 421(

25

5!
)} −

1

4480
{−560(

1

4!
) + 47(

24

4!
)} −

1

40320
{1024(

1

3!
) − 41(

23

3!
)}

26

6!
−

1

105
{128 (

1

5!
) + 41(

25

5!
)} −

2

35
{−

24

4!
} −

1

315
{16 (

1

3!
) +

23

3!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣7 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

7!
−

1

13440
{8192(

1

6!
) − 421(

26

6!
)} −

1

4480
{−560(

1

5!
) + 47(

25

5!
)} −

1

40320
{1024(

1

4!
) − 41(

24

4!
)}

27

7!
−

1

105
{128 (

1

6!
) + 41(

26

6!
)} −

2

35
{−

25

5!
} −

1

315
{16 (

1

4!
) +

24

4!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣8 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

8!
−

1

13440
{8192(

1

7!
) − 421(

27

7!
)} −

1

4480
{−560(

1

6!
) + 47(

26

6!
)} −

1

40320
{1024(

1

5!
) − 41(

25

5!
)}

28

8!
−

1

105
{128 (

1

7!
) + 41(

27

7!
)} −

2

35
{−

26

6!
} −

1

315
{16 (

1

5!
) +

25

5!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 

𝛣9 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

9!
−

1

13440
{8192(

1

8!
) − 421(

28

8!
)} −

1

4480
{−560(

1

7!
) + 47(

27

7!
)} −

1

40320
{1024(

1

6!
) − 41(

26

6!
)}

29

9!
−

1

105
{128(

1

8!
) + 41(

28

8!
)} −

2

35
{−

27

7!
} −

1

315
{16 (

1

6!
) +

26

6!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [
0
0
] 
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𝛣10 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1

10!
−

1

13440
{8192(

1

9!
) − 421(

29

9!
)} −

1

4480
{−560(

1

8!
) + 47(

28

8!
)} −

1

40320
{1024(

1

7!
) − 41(

27

7!
)}

210

10!
−

1

105
{128(

1

9!
) + 41(

29

9!
)} −

2

35
{−

28

8!
} −

1

315
{16(

1

7!
) +

27

7!
}

]
 
 
 
 
 
 
 
 
 
 
 
 

= [ 6.9𝑒
−8

−4.1𝑒−20
] 

 

This proposed method has order z = 9, with error 
constant [6.9𝑒−8, −4.1𝑒−20].  

According to definition 6, hence proposed method 
is consistent. 

 

Zero-stability 

To apply Equation (18) in fuzzy form for zero-
stability of the proposed method 

Ρ(Ψ) = ⌈(
Ψ 0
0 Ψ2) (

1 0
0 1

) − (
0 1
0 1

)⌉ 

Ρ(Ψ) = Ψ( Ψ2 − 1) = 0 

Ψ = 0, 1−
+  

The obtained roots are lies on the unit disk so the 
proposed method is zero-stable. 

According to the theorem 1, proposed method is 
convergent. 

 

Region of Absolute Stability 

Obtaining the polynomial for absolute stability 
region is determined as 

 

(𝑑𝑒𝑡 [−(𝑤)𝜅 + 𝐴1 + 𝑧[∑ 𝐵𝑖𝑤𝑘−𝑖𝑘
𝑖=0 ] +

𝑧2[∑ 𝐶𝑖𝑤𝑘−𝑖𝑘
𝑖=0 ] + 𝑧3[∑ 𝐷𝑖𝑤𝑘−𝑖𝑘

𝑖=0 ]] )
𝛼

  

 𝑧 = 𝜆ℎ 

(20) 

So, proposed method polynomial for stability is 
obtained as: 

𝑅(𝑤) = (
𝑧6

7560
−

𝑧5

420
+

11𝑧4

504
−

99161𝑧3

793800
+

577𝑧2

1260
−

33011𝑧

33075
+

314

315
)𝑤3 − (

169𝑧6

793800
+

𝑧5

304
+

6287𝑧4

264600
+

307𝑧3

2520
+

11𝑧2

24
+ 𝑧 + 1)𝑤  

Roots of the polynomial for stability plotting using 
locus boundary approach is shown in the figure 
below.  

 
Fig. 1: Absolute stability Region of proposed 
method 
 
 

V. RESULTS AND DISCUSSION 

This section details the application of the developed 
Obrechkoff-type two-step implicit block method for 
the numerical solution of nonlinear FIVPs and the 
results obtained are compared with the exact 
solution. Comparison between exact and 
approximate solutions are shown in tables and 
graphs.  

𝑥 − axis show the value of approximation solution 

𝑦 − axis show the value of  𝛼 − level set 

 𝑌 ,  𝑌 are exact solution of lower and upper bound 
respectively 

 𝑦 , 𝑦  are approximation solution of lower and upper 
bound respectively 

| 𝑌 −  𝑦| absolute error of lower bound 
approximation  

⌈ 𝑌 −  𝑦⌉ absolute error of upper bound 
approximation  

ℎ is the step size  

Example 1. [5] 

Consider the non-linear Bernoulli FIVP with 
triangular and trapezoidal fuzzy numbers 

𝑦′(𝑡) + 𝑡𝑦(𝑡) = 2𝑡𝑦2(𝑡)   𝑡 ∈ [0,1]  

𝑦(0, 𝛼) = [3 − 𝛼, 1 + 𝛼] 𝑎𝑛𝑑 [3 −
3

2
𝛼, 1 −

1

2
𝛼], 

with exact solution 

𝑌(𝑡, 𝛼) =   
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[(2 + (3 − 𝛼)𝑒
𝑡2

2 )
−1

, (2 + (1 + 𝛼)𝑒
𝑡2

2 )
−1

] and 

[(2 + (3 −
3

2
𝛼) 𝑒

𝑡2

2 )
−1

, (2 + (1 −
1

2
𝛼) 𝑒

𝑡2

2 )
−1

]  

Which at 𝑡 = 1, 

𝑌(1, 𝛼) = [𝑌(1, 𝛼), 𝑌(1, 𝛼)]  where 0 < 𝛼 ≤ 1 

The exact and approximate solutions shown in 
Tables I, and II, represents the lower and upper 
solution of the given FIVPs respectively. 

Figure 2,3 represents the complete iterations graphs 
of triangular and trapezoidal number respectively 
with the step-size ℎ = 0.1 partition of the time 
interval 𝑡 ∈ [0,1]. 

 

TABLE I 
Lower/Upper Solution with Triangular Fuzzy 

Number of Example 1 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

0.143964356017342450 
0.147464531308613340 
0.151139145763040220 
0.155001572988822610 
0.159066589520268980 
0.163350563735510070 
0.167871676146674360 
0.172650177313688980 
0.177708691098104750 
0.183072572836609160 
0.188770334399073120 

5.551115e-17 
8.326673e-17 
1.110223e-16 
1.665335e-16 
1.942890e-16 
2.220446e-16 
2.498002e-16 
3.053113e-16 
3.608225e-16 
3.608225e-16 
4.163336e-16 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0.274068619061197450 
0.262219879178707260 
0.251353189755283870 
0.241351317225855620 
0.232114973806293650 
0.223559510199762830 
0.215612313718264230 
0.208210742310189520 
0.201300469991207790 
0.194834151170723640 
0.188770334399073120 

4.996004e-16 
5.551115e-16 
5.551115e-16 
5.828671e-16 
5.828671e-16 
5.551115e-16 
5.828671e-16 
5.273559e-16 
4.718448e-16 
4.440892e-16 
4.163336e-16 

 
 
 

TABLE II 
Lower/Upper Solution with Trapezoidal Fuzzy 

Number of Example 1 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

0.143964356017342450 
0.149279228647828920 
0.155001572988822610 
0.161180115928929310 
0.167871676146674360 
0.175142916560684790 
0.183072572836609160 
0.191754315981089580 

5.551115e-17 
1.110223e-16 
1.665335e-16 
2.220446e-16 
2.498002e-16 
3.053113e-16 
3.608225e-16 
4.163336e-16 

0.8 
0.9 
1 

0.201300469991207790 
0.211846898142716120 
0.223559510199762830 

4.718448e-16 
5.551115e-16 
5.551115e-16 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0.274068619061197450 
0.280403821318293330 
0.287038835142562290 
0.293995459079036570 
0.301297657383730270 
0.308971835831501340 
0.317047160775197400 
0.325555929581395400 
0.334534002360660050 
0.344021307160407800 
0.354062433629710850 

4.996004e-16 
4.440892e-16 
3.885781e-16 
3.885781e-16 
3.330669e-16 
2.775558e-16 
2.220446e-16 
1.665335e-16 
1.110223e-16 
1.110223e-16 
0.000000e+00 

 
Fig. 2 Example 1 with triangular fuzzy number 

 
Fig. 3 Example 1 with trapezoidal fuzzy number 

 
Example 2. [31] 

Consider the non-linear FIVP with triangular and 
trapezoidal fuzzy numbers 

𝑦′(𝑡) = 𝑦2(𝑡) + 1 

𝑦(0, 𝛼) =  

[
1

10
𝛼 −

1

10
,
1

10
−

1

10
𝛼] and  [ 1

100
𝛼 −

1

10
,
1

10
−

1

100
𝛼]  

with exact solution 

𝑌(𝑡, 𝛼) =  

[𝑇𝑎𝑛 (𝑡 − 𝑎𝑟𝑐𝑇𝑎𝑛 (
1−𝛼

10
)) , 𝑇𝑎𝑛 (𝑡 +

𝑎𝑟𝑐𝑇𝑎𝑛 (
1−𝛼

10
))] and 

[𝑇𝑎𝑛 (𝑡 − 𝑎𝑟𝑐𝑇𝑎𝑛 (
(10−𝛼)

100
)) , 𝑇𝑎𝑛 (𝑡 +

𝑎𝑟𝑐𝑇𝑎𝑛 (
(10−𝛼)

100
))]  

Which at 𝑡 = 1, 
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𝑌(1, 𝛼) = [𝑌(1, 𝛼), 𝑌(1, 𝛼)]  where 0 < 𝛼 ≤ 1 

The exact and approximate solutions shown in 
Tables III, and IV represents the lower and upper 
solution of the given FIVPs respectively. 

Figure 4,5 represents the complete iterations graphs 
of triangular and trapezoidal number respectively 
with the step-size ℎ = 0.1 partition of the time 
interval 𝑡 ∈ [0,1]. 

 

TABLE III 
Lower/Upper Solution with Triangular Fuzzy 

Number of Example 2 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

1.261016102725076800 
1.287011566649140200 
1.313727034166937100 
1.341192838562831100 
1.369441041285456700 
1.398505556798372600 
1.428422288413147400 
1.459229276248731600 
1.490966858599166200 
1.523677848148974600 
1.557407724654902300 

8.881784e-16 
1.332268e-15 
1.332268e-15 
1.110223e-15 
1.332268e-15 
1.554312e-15 
1.554312e-15 
1.332268e-15 
1.554312e-15 
1.554312e-15 
1.332268e-15 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1.963150263095175200 
1.915961751533205900 
1.870452269733388100 
1.826533770950384600 
1.784124258798744300 
1.743147276322709200 
1.703531445981465000 
1.665210054727049900 
1.628120679100946200 
1.592204845917552000 
1.557407724654902300 

2.442491e-15 
1.776357e-15 
1.998401e-15 
1.998401e-15 
1.776357e-15 
1.776357e-15 
1.998401e-15 
1.554312e-15 
1.554312e-15 
1.554312e-15 
1.332268e-15 

 
 
 
 
 
 
 
 
 
 
 

TABLE IV 
Lower/Upper Solution with Trapezoidal Fuzzy 

Number of Example 2 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

1.261016102725076800 
1.263584079625319000 
1.266158996135131600 
1.268740880422606400 
1.271329760808488600 
1.273925665767212700s 
1.276528623927945600 
1.279138664075639900 

8.881784e-16 
1.110223e-15 
8.881784e-16 
1.110223e-15 
1.110223e-15 
1.110223e-15 
1.110223e-15 
1.110223e-15 

0.8 
0.9 
1 

1.281755815152094700 
1.284380106257024800 
1.287011566649140200 

8.881784e-16 
1.110223e-15 
1.332268e-15 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

1.963150263095175200 
1.958353212274391200 
1.953573794667807600 
1.948811913228351700 
1.944067471619798100 
1.939340374210271700 
1.934630526065822500 
1.929937832944070200 
1.925262201287917500 
1.920603538219334000 
1.915961751533205900 

2.442491e-15 
1.554312e-15 
2.220446e-15 
1.998401e-15 
1.998401e-15 
1.998401e-15 
2.442491e-15 
1.776357e-15 
1.554312e-15 
2.220446e-15 
1.776357e-15 

 
Fig. 4 Example 2 with triangular fuzzy number 

 
Fig. 5 Example 2 with trapezoidal fuzzy number 

 
Example 3. [32] 

Consider the crisp non-linear IVP  

𝑦′(𝑡) = −𝑦(𝑡) − 𝑦2(𝑡) 𝑦(0) = 1 

According to Jameel [33], the crisp equation can be 
model in a fuzzy version by using the definition of 
the fuzzy theory. In this example according to [33], 
difuzzify the initial condition [1]𝑟 as both triangular 
and trapezoidal fuzzy numbers. So, ca writes the 
crisp initial condition in fuzzy form follow as   

𝑦(0, 𝛼) = [ 1

𝛼−4
,

1

−2𝛼−1
] and [ 2

𝛼−8
,

1

−1.5𝛼−1
]  

with exact solution 

𝑌(𝑡, 𝛼) = [(
𝑒−𝑡

𝛼−3−𝑒−𝑡
) , (

𝑒−𝑡

−2𝛼−𝑒−𝑡
)]and 

[(
𝑒−𝑡

0.5𝛼−3−𝑒−𝑡
) , (

𝑒−𝑡

−1.5𝛼−𝑒−𝑡
)]  

Which at 𝑡 = 1, 
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𝑌(1, 𝛼) = [𝑌(1, 𝛼), 𝑌(1, 𝛼)]  where 0 < 𝛼 ≤ 1 

The exact and approximate solutions shown in the 
Tables V, and VI represents the lower and upper 
solution of the given FIVPs respectively. 

Figure 6,7 represents the complete iterations graphs 
of triangular and trapezoidal number respectively 
with the step-size ℎ = 0.05 partition of the time 
interval 𝑡 ∈ [0,1]. 

 

TABLE V 
Lower/Upper Solution with Triangular Fuzzy 

Number of Example 3 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

-0.10923177257303593 
-0.11257436138450932 
-0.11612798024769690 
-0.11991326524583731 
-0.12395363371843628 
-0.12827576915896249 
-0.13291021122500396 
-0.13789207844036225 
-0.14326195976070402 
-0.14906702289995938 
-0.15536240349696362 

0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+0 
2.775558e-17 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

-1.00000000000000000 
-0.64781257164824857 
-0.47908489464208343 
-0.38008808279488926 
-0.31499778847244764 
-0.26894142136999510 
-0.23463503092851382 
-0.20809079658037991 
-0.18694206234120239 
-0.16969552558358772 
-0.15536240349696362 

0.000000e+00 
0.000000e+00 
5.551115e-17 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
2.775558e-17 
0.000000e+00 
2.775558e-17 
0.000000e+00 

 
 
 
 
 
 
 
 
 
 
 

TABLE VI 
Lower/Upper Solution with Trapezoidal Fuzzy 

Number of Example 1 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 

-0.1092317725730359 
-0.1108778807953176 
-0.1125743613845093 
-0.1143235624257939 
-0.1161279802476969 
-0.1179902713086377 
-0.1199132652458373 
-0.1218999792213845 

0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 
0.00000e+00 

0.8 
0.9 
1 

-0.1239536337184362 
-0.1260776699614942  
-0.1282757691589624 

0.00000e+00 
2.77558e-17 
2.75558e-17 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

-1.00000000000000000 
-0.71035729925733238 
-0.55081713628763873 
-0.44979666030549864  
-0.38008808279488926 
-0.32908686538320808 
-0.29015332942976380 
-0.25945749017102809  
-0.23463503092851382 
-0.21414741474557783 
-0.19695031331397192 

0.000000e+00 
0.000000e+00 
0.000000e+00 
5.551115e-17 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
5.551115e-17 
2.775558e-17 

 
Fig. 6 Example 3 with triangular fuzzy number 

 
Fig. 7 Example 3 with trapezoidal fuzzy number 

 
Example 4. [34] 

Consider the non-linear FIVP with triangular and 
trapezoidal fuzzy numbers 

𝑦′(𝑡) = 𝑡𝑦2(𝑡) 

𝑦(0, 𝛼) = [
2

𝛼+1
,
2

3−𝑟
] and [ 4

𝛼+2
,
4

6−𝑟
]  

with exact solution 

𝑌(𝑡, 𝛼) = [(
2

𝛼+1−𝑡2
) , (

2

3−𝛼−𝑡2
)] and 

[(
2

0.5𝛼+1−𝑡2
) , (

2

3−0.5𝛼−𝑡2
)]  

Which at 𝑡 = 0.5, 

𝑌(0.5, 𝛼) = [𝑌(0.5, 𝛼), 𝑌(0.5, 𝛼)]  

The exact and approximate solutions shown in 
Tables VII and VIII represents the lower and upper 
solution of the given FIVPs respectively. 

Figure 8,9 represents the complete iterations graphs 
of triangular and trapezoidal number respectively 
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with the step-size ℎ = 0.05 partition of the time 
interval 𝑡 ∈ [0,0.5]. 

 

TABLE VII 
Lower/Upper Solution with Triangular Fuzzy 

Number of Example 4 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 

2.666666666666666100 
2.352941176470587900 
2.105263157894736700 
1.904761904761904700 
1.739130434782608600 
1.600000000000000100 
1.481481481481481400 
1.379310344827586300 
1.290322580645161300 
1.212121212121212200 
1.142857142857142800 

4.440892e-16 
0.000000e+00 
0.000000e+00 
0.000000e+00 
2.220446e-16 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 

𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 
0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0.727272727272727290 
0.754716981132075530 
0.784313725490196070 
0.816326530612244920 
0.851063829787234050 
0.888888888888888840 
0.930232558139534870 
0.975609756097560950 
1.025641025641025500 
1.081081081081081100  
1.142857142857142800 

0.000000e+00 
0.000000e+00 
1.110223e-16 
1.110223e-16 
0.000000e+00 
0.000000e+00 
1.110223e-16 
0.000000e+00 
0.000000e+00 
2.220446e-16 
0.000000e+00 

 

 

 

 

 

 

 

 

 

 

TABLE VIII 
Lower/Upper Solution with Trapezoidal Fuzzy 

Number of Example 4 

𝛼  𝑦 | 𝑌 −  𝑦| 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

2.666666666666666100 
2.499999999999999600 
2.352941176470587900 
2.222222222222222300 
2.105263157894736700 
2.000000000000000000 
1.904761904761904700 
1.818181818181818100 
1.739130434782608600 
1.666666666666666700 

4.440892e-16 
4.440892e-16 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
0.000000e+00 
2.220446e-16 
0.000000e+00 

1 1.600000000000000100 0.000000e+00 
𝛼 𝑦 ⌈ 𝑌 − 𝑦⌉ 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

0.727272727272727290 
0.740740740740740700 
0.754716981132075530 
0.769230769230769270 
0.784313725490196070 
0.800000000000000040 
0.816326530612244920 
0.833333333333333370 
0.851063829787234050 
0.869565217391304320 
0.888888888888888840 

0.000000e+00 
0.000000e+00 
0.000000e+00 
1.110223e-16 
1.110223e-16 
0.000000e+00 
1.110223e-16 
0.000000e+00 
0.000000e+00 
1.110223e-16 
0.000000e+00 

 
Fig. 8 Example 4 with trapezoidal fuzzy number 

 
Fig. 9 Example 4 with trapezoidal fuzzy number 

In existing literature, most researchers considered 
the numerical solution of linear fuzzy differential 
equations rather than the nonlinear form. In this 
article, a new numerical method is developed to 
solve nonlinear fuzzy differential equations as 
shown with examples above. In Example 1, 
presented the nonlinear fuzzy differential equation 
[5], although the numerical solution was not 
considered. Hence, Example 1 is solved 
approximately using the developed method in this 
article and compared with the exact solution. From 
Tables (1-4) and the Figures (2-5), it is seen that the 
accuracy of the obtained results in term of absolute 
error is impressive.  

For Example, 2, implemented the solution using 
Runge Kutta method with six-stages and order five 
[31]. The authors computed the approximate 
solution with very small step-size (ℎ = 0.001) and 
their obtained results had accuracy in term of 
absolute error to 10−15. Although, the accuracy 
seems good, the time taken to implement the 
required iterations using ℎ = 0.001 involves a lot of 
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computational burden. For this reason, Example 2 is 
solved using the developed method with a larger 
step-size (ℎ = 0.01) compared to [31], and the 
obtained results have accuracy in term of absolute 
error to 10−16. The new block method achieves 
good accuracy with fewer iterations which saves 
time with low computing burden. The results and 
graphs are presented in Tables (5-8) and Figures (6-
9). 

Example 3 was considered by Al-Omari [32] as a 
crisp first-order nonlinear initial value problem. In 
this example, the definition of fuzzy numbers in 
Section 2 is adopted to difuzzify the initial condition 
as fuzzy numbers, hence having the form of a 
nonlinear FIVP. Thereafter, Example 3 is solved 
using the developed method and the obtained results 
are compared with the exact solution as shown in 
Tables (9-12) and Figures (10-13), which indicates 
that the accuracy of the proposed method in terms of 
absolute error.  

Example 4 was solved using the artificial neural 
network approach [34], and the obtained results have 
accuracy in term of absolute error to 10−5. In this 
existing study author obtained the results in a small 
interval [0 0.2] and compared with the exact 
solution which not shown article. This implies that 
that artificial neural network approach limited to 
specific points. In this article, Example 4 is written 
with exact solution provided and solved by the 
proposed method in the interval [0,0.5] with greater 
accuracy. The obtained results of Example 4 are 
presented in Tables (13-16), Figures (14-17). 

In addition, each example in this article is solved by 
proposed method using both triangular and 
trapezoidal fuzzy numbers in the given interval. 
Figures (2-13) displays the exact and approximate 
solutions with both triangular and trapezoidal fuzzy 
numbers. Based on the numerical solutions, the 
numerical results provided by the developed method 
in this article is very accurate. From the tables, it has 
been found that the error range is small with step size 

ℎ = 0.1, and as ℎ → 0  then the error is much 
smaller. For this reason, Obrechkoff-type two-step 
implicit block method with the presence of second 
and third derivative method is an effective iterative 
method for the numerical solution of first order 
nonlinear FIVPs. 

 

VI. CONCLUSION 

The main goal of this article is to develop a 
numerical method for the solution of first-order 
nonlinear FIVPs with the aim of obtaining better 

accuracy of the solution in terms of absolute error 
when compared to existing studies. Therefore, for 
the solution of nonlinear fuzzy ordinary differential 
equation with fuzzy initial value problem, block 
method with higher derivatives have proven to be an 
effective approach with improved accuracy. One of 
the benefits of the Obrechkoff-type two-step implicit 
block method as an effective method is its high 
accuracy with a smaller area of predicted uncertainty 
in solutions, while also being self-starting. The 
method was developed by using linear block 
approach with low computational complexity, and 
likewise satisfied the convergence conditions for the 
linear multistep methods. The solution of the 
nonlinear FODEs with a FIVPS, as seen in the 
tables, and graphs, demonstrates the applicability of 
the Obrechkoff-type two-step implicit block method 
for first-order nonlinear differential equation with 
fuzzy initial value problem. As a result, this 
proposed method is a suitable method for first-order 
nonlinear FIVPs. 
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