
Abstract—Renewable energy systems (RES) are no longer 

confined to being used as a stand-alone entity in the modern era. 

These RES, especially solar panels are also used with the grid 

power systems to supply electricity. However, precise forecasting 

of solar irradiance is necessary to ensure that the grid operates in 

a balanced and planned manner. Various solar forecasting 

models (SFM) are presented in the literature to produce an 

accurate solar forecast. Nevertheless, each model has gone 

through the step of evaluation of its accuracy using some error 

measures. Many error measures are discussed in the literature 

for deterministic as well as probabilistic solar forecasting. But 

each study has its own selected error measure which sometimes 

landed on a wrong interpretation of results if not selected 

appropriately. As a result, this paper offers a critical assessment 

of several common error metrics with the goal of discussing 

alternative error metrics and establishing a viable set of error 

metrics for deterministic and probabilistic solar forecasting. 

Based on highly cited research from the last three years (2021-

2019), error measures for both types of forecasting are presented 

with their basic functionalities, advantages & limitations which 

equipped the reader to pick the required compatible metrics 

Index Terms—Error measures, deterministic forecasting, 

probabilistic forecasting, solar forecasting, root mean square 

error.  

I. INTRODUCTION

mong various renewable energy resources (RES), solar

energy has been recognized as one of the potential

solutions to the electricity demand [1]. However, the 

intermittent and uncertain behavior of solar photovoltaic (PV) 

output is one of the biggest challenges to the grid integrated 

power systems. As a result, solar forecasting or PV power 

forecasting (commonly both referred to as solar forecasting) 

has received unprecedented attention from the various 

communities of researchers. Progress in solar forecasting has 

been steadily increasing since the end of the nineteenth 

century, with the goal of providing accurate solar forecasting 

models (SFM) [2]. While searching the publications for the 

keyword “solar forecasting” and “PV forecasting”, Google 
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scholar (a reputed technical research database) returns 19300 

and 16000 results respectively since the year 2020 as on date 

of 17th August 2021, 11:58 p.m.  

From consideration of this abundant literature of solar 

forecasting, numerous new SFM has been developed and also 

being developed. Many researchers have also been presented 

an extensive review on various SFMs. Table 1 presented the 

top 10 review studies on the SFMs published in recent years. 

These papers are selected from the year 2019-2021 based on 

the number of citations from google scholar (as on date 17th 

Aug., 2021). 

The publications mentioned in table 1 only presented the 

details of different forecasting models and their fundamental 

methodologies. Nevertheless, these studies are based on a 

limited number of papers and can only provide a brief of 

recent works among total selected publications. In other 

words, these publications act like local optima instead of a 

global solution in an optimization problem. Moreover, these 

publications aware the researcher’s community about the 

recent development in the solar forecasting models only.  

In parallel, to estimate the performance of any SFM, some 

statistical measures are adopted by the developers. In the last 

two decades, various accuracy measures or error measures 

have been used by developers to evaluate their models. These 

measures provide the necessary feedback to the decision-

maker for refining and calibrating the measured model to 

optimize the preciseness of the model. Upon searching the 

abundant literature of solar forecasting/PV forecasting, no 

universal or single error metrics has been found that has been 

accepted by every researcher to evaluate their model. Each 

study has its own adopted statistical measure on the 

unexplained ground to prove its accuracy best. Sometimes in 

practical problems, some of the popular metrics are failed to 

provide easily interpretable results. For instance, the mean 

absolute percentage error (MAPE) is one of the popular 

metrics to evaluate any SFM, but is vulnerable to the outliers 

[3]. Lastly, despite of developments of various SFMs, the 

solution of universal single error metrics for all models is still 

controversial. 

TABLE I 

RECENTLY PUBLISHED LITERATURE REVIEW ON SOLAR/ PV 

FORECASTING 

Ref. YOP Title 

[1] 2019 A review of deep learning for renewable energy forecasting 

[4] 2019 Modeling of solar energy systems using artificial neural 
network: A comprehensive review 
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[5] 2019 Review on forecasting of photovoltaic power generation based 

on machine learning and met heuristic techniques 

[6] 2020 A review and evaluation of the state-of-the-art in PV solar 

power forecasting: Techniques and optimization 

[2] 2019 A current perspective on the accuracy of incoming solar 
energy forecasting 

[7] 2019 Sustainability perspectives- a review for solar photovoltaic 

trends and growth opportunities 
[8] 2019 Clear sky solar irradiance models: A review of seventy 

models 

[9] 2020 Advanced Methods for photovoltaic output power forecasting: 
A review 

[10] 2020 A comprehensive review of hybrid models for solar radiation 

forecasting 
[11] 2020 Solar irradiance measurement instrumentation and power 

solar generation forecasting based on Artificial Neural 
Networks (ANN): A review of five years research trend 

Based on the above ground, this paper provides a review of 

various popular error measures for the case of solar 

forecasting/ PV forecasting. This paper discusses the different 

error measures used in deterministic as well as probabilistic 

forecasting. The critical findings from various studies about 

the error measures are thoroughly discussed in the presented 

manuscript. 

This paper is organized is as follows: section 2 discusses the 

different error measures for the deterministic and probabilistic 

solar forecasting. Section 3 provides the critical analysis of the 

error measures used by recent studies. The key findings are 

also discussed in this section. Section 4 presents some 

cautions about referring the previous work and section 5 

conclude the paper. 

II. ERROR MEASURES

By examining the recent literature of solar forecasting, the 

numerous error measures have been obtained. All the 

measures can be categories for the type of forecasting: 

deterministic solar forecasting and probabilistic solar 

forecasting. Fig. 1 shows the two types of solar forecasting 

along with their respective error measures. 

Fig.1. Different errors used in solar forecasting 

A. Error Measures of deterministic forecasting

If M is the total samples of solar/ PV data series, tF is the 

original solar/ PV series and tF


 is the forecasted solar /PV 

series at any time stamp t then error measures can be 

represented mathematically as [3]:  

Mean Bias Error (MBE): MBE is used to calculate the 

average bias in the forecast. 
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The value of MBE in positive direction represents the 

overestimation by the SFM whereas, negative value represents 

the underestimation. 

Mean Absolute Error (MAE): A uniform estimation of error is 

identified by this measure. 
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Standard Deviation Error (SDE): This measure used to 

estimate the deviations from the mean. 
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Root Mean Square Error: It is one of the popular error 

measures used to evaluate the performance of SFM. This 

measure identifies the largest error in the forecasted sequence. 
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Mean Absolute Percentage Error (MAPE): This is simply the 

representation of uniform error (MAE) in percentage form. 
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Normalized RMSE: It is RMSE on a different scale. It can be 

calculated from RMSE of the forecasted output to the mean of 

forecasted data. 
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Normalized MBE: It is MBE on a different scale. It can be 

calculated from MBE of the forecasted output to the mean of 

forecasted data. 
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Normalized MAE: It is MAE on a different scale. It can be 

calculated from MAE of the forecasted output to the mean of 

forecasted data. 

)( tFmean

MAE
nMAE =

(8)

Forecast Skill: It is a unit less measure to evaluate the 

effectiveness of the SFM. It can be computed with reference to 

any benchmark model in term of RMSE, MAPE, and MAE 

etc. 

For a case of RMSE, 

ref

observed

RMSE

RMSE
FS −=1 (9) 

Kolonogorov-Smirnov test Integral (KSI): It is another notable 

error measure in case of point or deterministic solar 

forecasting. Unlike other error measure, it compares the 

cumulative distribution function (CDF) of the forecasted series 

and the actual series. It can be represented as: 

=
max

min

x

x

ndxKKSI (10) 

Where xmin & xmax are the minimum and maximum values 

from the forecasted data, Kn = Difference in the two CDFs. 

A zero value of KSI interpreted as the equal CDF of both 

series. 

Correlation Coefficient: It represents the strength in the linear 

relationship between the forecasted values and the observed 

values. 
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Table II represents the different error measure applications by 

the various highly cited studies in the recent years to observe 

the performance of the SFM. The used measure is denoted by 

the symbol of tick against each paper. However, the Colum 

“other” comprises of small error measures like SDE, Bias, 

skewness, kurtosis etc. 

TABLE II 
ERROR MEASURES OF DETERMINISTIC SOLAR FORECASTING IN RECENT PUBLICATIONS 

Ref. YOP RMSE MAPE MAE MBE nRMSE nMAE nMBE FS R2 Others 

[12] 2021 ✓ ✓ ✓ ✓ ✓

[13] 2021 ✓ ✓ ✓

[14] 2021 ✓ ✓ ✓ ✓

[15] 2021 ✓ ✓ ✓ ✓

[16] 2021 ✓ ✓ ✓ ✓

[17] 2021 ✓ ✓ ✓ ✓ ✓

[18] 2021 ✓ ✓ ✓

[19] 2021 ✓ ✓ ✓

[20] 2021 ✓ ✓

[21] 2021 ✓ ✓

[22] 2020 ✓ ✓ ✓

[23] 2020 ✓ ✓ ✓

[24] 2020 ✓ ✓

[25] 2020 ✓ ✓ ✓

[26] 2020 ✓ ✓ ✓ ✓

[27] 2020 ✓ ✓ ✓

[28] 2020 ✓ ✓

[29] 2020 ✓ ✓ ✓ ✓ ✓

[30] 2020 ✓ ✓ ✓

[31] 2020 ✓ ✓ ✓

[32] 2019 ✓

[33] 2019 ✓ ✓ ✓ ✓

[34] 2019 ✓ ✓ ✓

[35] 2019 ✓ ✓ ✓

[36] 2019 ✓ ✓

[37] 2019 ✓ ✓ ✓

[38] 2019 ✓ ✓

[39] 2019 ✓ ✓ ✓

[40] 2019 ✓ ✓ ✓ ✓

[41] 2019 ✓ ✓ ✓ ✓ ✓

B. Error measures of probabilistic forecasting

Prediction interval nominal confidence (PINC): The 

prediction interval (PI) is one of the prime parameters in the 

probabilistic forecasting which depicts about the probability of 

lying forecasting values within any specified range. In 

parallel, the PI directly affected by the value of significance 

level α.  So, PINC is the calculation of probability for the 

future value of solar output that falls within the PI.  

)%1(100 −=PINC
(12)

In addition, the PI for a time t and significance level α can be 

represented as: 

ttt LUP −=

where UL & Lt are the upper and lower level of PI 

respectively.  

Prediction interval coverage probability (PICP): it is used to 

evaluate the distributions of the forecasted values and can be 

expressed as: 
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where M is the total sample in the observations and Ct is 
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Prediction interval normalized average width (PINAW): 
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where R is the range of observed values. 

Coverage width-based criterion (CWC): 

This measure used the values of PICP and PINAW to evaluate 

the SFM. 
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where β (PICP) is a step function that can be represented as: 
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Continuous ranked probability score (CRPS): This is one of 

most widely used error measure in case of probabilistic 

forecasting. Like MAE in deterministic forecasting, it also 

generalizes in MAE for the probabilistic forecasting. 
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where η is the Heaviside step function represented as: 
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To analyze the popularity of each probabilistic error 

measure, table III has been prepared from the highly cited 

publication of recent years.  

 

TABLE III 
ERROR MEASURES OF PROBABILISTIC SOLAR FORECASTING IN RECENT PUBLICATIONS 

Ref. YOP CRPS RE S PICP PINAW BSS CRPSS QS CWC PBL Other 

[42] 2021 ✓  ✓   ✓        ✓  
[43] 2021 ✓  ✓     ✓  ✓      
[44] 2021 ✓       ✓      

[45] 2021 ✓       ✓  ✓     

[46] 2021    ✓  ✓       ✓  
[47] 2021 ✓       ✓      

[48] 2021 ✓  ✓  ✓          
[49] 2020 ✓    ✓  ✓        

[50] 2020 ✓  ✓  ✓   ✓        

[51] 2020   ✓         ✓  
[52] 2020    ✓  ✓        

[53] 2020 ✓      ✓      ✓  
[54] 2020 ✓  ✓    ✓   ✓     ✓  

[55] 2020 ✓     ✓        

[56] 2020  ✓   ✓  ✓   ✓    ✓   
[57] 2020 ✓    ✓    ✓  ✓     

[58] 2020 ✓    ✓  ✓      ✓   

[59] 2020  ✓  ✓        ✓   
[60] 2020 ✓       ✓      

[61] 2020    ✓  ✓     ✓    

[62] 2020    ✓        ✓  
[63] 2020 ✓  ✓           

[64] 2019 ✓     ✓   ✓      

[65] 2019     ✓     ✓    
[66] 2019 ✓      ✓      ✓  
[67] 2019            

 

In table III, each error measure according to their application 

in respective study is mark with the symbol “tick”. The other 

matrices represent the average coverage error (ACE), barrier 

score (BS) etc. In addition, based on these references, the 

percentage share of each error metrices in deterministic and 

probabilistic forecasting is shown in fig. 2. It is evident from 

the fig. 2(a), RMSE has greatest share among all error 

metrices, represents the first choice of researchers to 

represents the forecasting accuracy of their models. Whereas, 

the MAPE & MAE scored with the same percentage. 

Similarly, as can be seen in fig. 2(b), the CRPS and PINAW 

are the mostly used error metrices for the evaluation of 

probabilistic forecasting.  

III. CRITICAL REVIEW 

This section provides the critical findings of the entire 

survey of the error measures. From the critical examinations 

of several measures, a question arises that what is the ideal 

error measure? Some studies suggested a measures, that are 

capable of interpret the results easily and sensitive to the 

outliers i.e., robustness. On the other hand, some have been 

suggested that the criteria of forecast evaluation must 

correspond to the criteria of forecast optimization. While some 

are in favour of the scale independent error measures. 

Therefore, the following are the critical observations on the 

popular error measure that have been used by most cited 

papers as mentioned in table II & III. 
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Fig. 2 (a) Percentage share of different error metrices in 

deterministic forecasting. 

 

 
Fig. 2 (b) Percentage share of different error metrices in 

probabilistic forecasting. 

A. Key findings: Deterministic forecasting 

It is apparent from table II and fig. 2 (a), the RMSE is most 

popular and common error measure used to evaluate the SFM. 

It is widely used to observe the model performance in case of 

determining solar forecast. It is due to the fact that the largest 

errors in the solar forecasting are highly undesirable. RMSE 

penalize the model performance for the highest errors present 

in the final results [11]. 

MAE and MBE are the second most widely used error 

measure after RMSE for the evaluation of SFM. However, 

they are scale dependent measures and can show biased results 

for different scales. These error measures are only useful in 

case where the results achieve the Gaussian distribution [69].  

MAPE is a highly unsuitable error measure for examination 

of the accuracy of the SFM. The results of this measure are 

highly affected by skewed and diffused distributions. The 

interpretation of MAPE results also becomes inefficient in 

large skewed distributions due to the high influence of 

outliers. Moreover, the MAPE penalizes the positive values of 

error instead of negative values which also leads to biased 

results [3]. However, many of the authors mentioned in table 2 

used this measure to shows the average errors in percentage 

but statistically; it is a poor measure due to non-symmetric 

losses and extreme percentages. 

MASE is used to overcome the problem of MAPE, MASE 

is considered to evaluate the performance of a SFM. It is 

another MAE but scaled by the MAE of benchmark/ reference 

model [11]. However, MAAPE; another version of MAPE is 

uncommon in the literature of solar forecasting but also used 

by some of the potential studies [70]. It transforms the MAPE 

into MAAPE measure using the arctangent function. This 

measure not only removes the shortcomings of the MAPE but 

also preserve the original characteristics of the MAPE. 

Therefore, MAAPE could be a good statistical error measure 

for observing the performance of SFM instead of MAPE.  

KSI is another notable error measure to evaluate the 

accuracy of the point forecast of solar irradiance. This 

measure never compares the forecasted values of a SFM to its 

respective actual values as in other measures. Instead, a 

gathering of forecast distribution of the SFM makes it more 

popular. Furthermore, it is popularly used in the case of time 

series-based forecasting where its emphasis is on the 

variability of forecasted values with respect to actual values. 

In other words, by using this error measure, the lesser 

variability in the forecast can be detected by obtaining the 

larger value of KSI [11]. 

B. Key findings: Probabilistic forecasting 

Apart from point forecast, probabilistic forecast produces 

highly satisfactory results in solar forecasting. Point forecast 

provides a fixed forecast at a specific interval of time. 

Whereas, probabilistic forecast provides the detail of 

uncertainty in forecasted results using a range of expectations 

in terms of prediction interval (PI), where the forecast value 

will fall. In other words, PI forecasting generates to achieve a 

density function of the desired value.  

PICP, PINAW are the two most commonly used parameters 

to observe the reliability of a PI. However, PICP determines 

the probability of the forecast fall within the range. In parallel, 

PINAW refers to the width of the PI. Therefore, these two are 

conflicting measures as both are required either high or low in 

a good forecast [42]. Another most common measures in 

probabilistic forecasting are CWC, which is the combination 

of PICP and PINAW. The main point in the CWC is that it 

penalizes the invalid PIs which indirectly enforce the good 

forecast to achieve valid PICP. Lastly, CRPS is global 

measure in the probabilistic forecasting and can be understood 

as MAE in deterministic forecasting. Unlike other metrics, the 

CRPS is calculated by determining the cumulative distribution 

function (CDF) of the forecast. So, probabilistic forecasting is, 

however, a better forecasting method but observed lesser work 

on it compared to deterministic forecasting.  

IV. CAUTIONS 

While working with solar forecasting, either in 

deterministic forecasting or probabilistic forecast, it is 

necessary to use the terms cautiously. With the huge literature 

on deterministic forecasting, many of the studies altered the 

universal naming conventions as well as used different 
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acronyms for a known error measure. For instance, Gueymard 

et al. (2014) obtained the percentage value of RMSE, MAE 

and MBE but the acronyms of error metrics were not changed 

[68]. Likewise, the word “deviation” was used many times 

instead of the actual word “error”. Moreover, a normalization 

of any error measure can be obtained by dividing the mean of 

the sample. But sometimes, to represents the lesser values of 

normalized error measures, studies divided it by the maximum 

value from the sample [69]. 

V. CONCLUSION 

While developing a solar forecasting model, a clear 

understanding of the error measures is highly desirable. Since, 

an unclear and inappropriate selection of the error measure 

leads to a different conclusion. This paper is designed with an 

aim to present a clear representation of different error 

measures of deterministic and probabilistic forecasting in 

solar/ PV forecasting. Various key findings are obtained from 

the highly cited studies of the latest literature. From this study 

of highly cited papers from latest literature (year 2021-2019), 

it is found that the RMSE, MAE, MAPE and R2 are the most 

common error metrics in deterministic forecasting with the 

25%, 15%, 12% and 12 % respectively. On the other hand, 

CRPS, PINAW, PICP and RE are the most common error 

metrics in probabilistic forecasting with 23%, 15%, 12% and 

10% respectively share among all. Conclusively, it is observed 

that the performance of a solar forecasting model is highly 

dependent on the type of geographical area as well as the type 

of weather. Therefore, a scale-dependent error measure like 

“forecast skill” is advised to compare the performance of the 

different models for different datasets.  Therefore, for a solar 

forecasting model, the discussed error measures are 

recommended in practice. However, for a future prospectus, a 

new error measure can be developed with the characteristics of 

scale independence and free from bias. 

ABBREVIATIONS 

APE: Absolute percentage error; BSS: Brier skill score; 

CRPS: Continuous ranked probability score; CWC: Coverage 

width-based criterion; FS: Forecast skill; ICP: Interval 

coverage probability; KSI: Kolonogorov-Smirnov test 

Integral; MAE: Mean absolute error; MAPE; Mean absolute 

percentage error; MBE: Mean bias error; PINAW: Prediction 

interval normalized average width; PICP: Prediction interval 

coverage probability; PINC: Prediction interval nominal 

confidence; QS: Quantile score; RMSE: Root mean square 

error; rMAE: relative mean absolute error; rMBE: Relative 

mean bias error; rRMSE: relative root mean square error; R2: 

Coefficient of determination; RE: reliability; S: sensitivity; 

SDE: standard deviation error; 
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