












 

IV. RESULTS AND PERFORMANCE EVALUATION 

In this case study, we have found Convolutional Neural 

Network (CNN) Efficient Net B-3 performed better at MRI 

Brain Tumor classification. CNN is very good at image 

pattern recognition. Other, Machine learning algorithms 

performed well respectively but did not produce result as good 

as Convolutional Neural Networks. Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), Random Forest (RF) 

were good in the early days of Machine Learning. But Deep 

Learning method Convolutional Neural Network produced 

much more good results than other algorithms in a short 

amount of time. Thus, we need to use more Deep Learning 

algorithms for better MRI image recognition such that, Vgg16, 

EfficientNet-B3, ResNet-150V2, Inception ResNetV2, TCN 

etc. This research is based on the analysis of the results and 

the accuracy we found throughout our experiment. 

 

 

Performance Evaluation: 

True Positive = TP,  True Negative = TN 

False Positive = FP,  False Negative = FN 

 

1) Accuracy =                            (6) 

2) Recall =                                          (7) 

3) Precision =                                        (8) 

4) F1 =                     (9) 

A. Using Vgg16 

Epoch vs. Accuracy: 

 

 
 

Fig. 13. Vgg16 Accuracy & Loss 

Confusion Matrix: 
Class Assigned 

Name 
 

 

Actual 

 

0 1 2 3 # 

79 2 12 0 0 glioma_tumor 

1 42 6 2 1 no_tumor 

5 4 85 2 2 meningioma_tumor 

1 1 3 82 3 pituitary_tumor 

 

Here Vgg16, 

Accuracy =  = 88.07% 

Recall  =  = 0.88 

Precision  =   = 0.88 

F1   =   = 0.88 

 

Also, we have used around 30 epochs in the vgg16 model and 

achieved 88.07% validation accuracy in average. 

B. Using EfficientNet-B3 

Epoch vs. Accuracy: 

 
Fig. 14. EfficientNet-B3 Accuracy & Loss 

Confusion Matrix: 
Class Assigned 

Name 
 

 

Actual 

 

0 1 2 3 # 

89 2 1 0 0 glioma_tumor 

0 49 0 0 1 no_tumor 

1 0 95 0 2 meningioma_tumor 

0 0 2 87 3 pituitary_tumor 

 
Here EfficienNet-B3, 

Accuracy =  = 98.16% 

Recall  =  = 0.98 

Precision  =   = 0.98 

F1   =   = 0.98 

 

Well, in the EfficientNet-B3 model after 15 epochs, we have 

achieved validation accuracy around 98.16%. 

C. Using Inception-ResNet-v2 

Epoch vs. Accuracy: 

 
 

Fig. 15. Inception-Resnet-V2 Accuracy & Loss 
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Confusion Matrix: 
Class Assigned 

Name 
 

 

Actual 

 

0 1 2 3 # 

90 2 1 0 0 glioma_tumor 

0 48 0 3 1 no_tumor 

2 0 93 1 2 meningioma_tumor 

0 0 2 87 3 pituitary_tumor 

 
Here Inception-Resnet-v2, 

Accuracy =  = 96.66% 

Recall  =  = 0.97 

Precision  =   = 0.97 

F1   =   = 0.97 

 

Moreover, Inception-Resnet-v2 got an accuracy of 96.66% 

with a number of 15 epoch. 

D. Using Resnet-150-v2 

Epoch vs. Accuracy: 

 

 
 

Fig. 16. Resnet-150v2 Accuracy & Loss 
 

Confusion Matrix: 
Class Assigned 

Name 
 

 

Actual 

 

0 1 2 3 # 

87 3 3 0 0 glioma_tumor 

0 50 1 0 1 no_tumor 

1 1 92 2 2 meningioma_tumor 

1 0 0 86 3 pituitary_tumor 

 
Here Resnet-150v2, 

Accuracy =  = 95.74% 

Recall  =  = 0.96 

Precision  =   = 0.96 

F1   =   = 0.96 

 

After 15 epochs, Resnet-150v2 models validation accuracy is 

gone flat and therefore stopped the model for further training. 

At this point, Resnet-150v2 the model got 95.74% accuracy in 

average. 

 

E. Using TCN 

Epoch vs. Accuracy: 

 
Fig. 17. TCN Accuracy & Loss 

 

Confusion Matrix: 
Class Assigned 

Name 
 

 

Actual 

 

0 1 2 3 # 

83 0 13 1 0 glioma_tumor 

2 37 7 2 1 no_tumor 

11 4 85 1 2 meningioma_tumor 

1 0 3 77 3 pituitary_tumor 

 

 

Here TCN, 

Accuracy =  = 85.46% 

Recall  =  = 0.86 

Precision  =   = 0.86 

F1   =   = 0.86 

 

TCN network ran for 30 epoch and achieved 85.46% accuracy 

which is still better than some of the machine learning 

algorithms. 
TABLE 1. Performance Metrics 

 
 

Algorithm

s 

 

      Labels Precision Recall F1 

 

Accuracy 

(%) 

 

SVM [1] 

Glioma 

 

85 

 

 

85 

 

87 

79.9% Meningioma 

 

76 

 

 

64 

 

69 

 

 

Pituitary 

 

97 94 92 

 

KNN [1] 

 

Glioma 

 

91 93 92 

91.83% 

 

Meningioma 

 

88 83 85 

 

Pituitary 

 

97 97 98 

 

RF [1] 

 

Glioma 

 

86 83 85 

77.87% 

 

Meningioma 

 

80 55 66 

 

Pituitary 

 

95 88 91 

EFFICIENT 

NET-B3 Glioma 99 

 

96 

 

97 98.16% 
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Meningioma 

 

 

98 

 

 

99 

 

98 

 
 

Pituitary 

 

 

98 

 

 

100 

 

99 

RESNET-

150V2 

Glioma 98 94 

 

96 

 

95.74% Meningioma 96 96 

 

96 

 

Pituitary 

 
98 99 

 

98 

 

INCEPTION

-RESNETV2 

 

Glioma 

 

98 97 97 

96.66% 

 

Meningioma 

 

99 97 98 

 

Pituitary 

 

96 100 98 

VGG16 

 

Glioma 

 

92 85 88 

88.07% 

 

Meningioma 

 

80 89 84 

 

Pituitary 

 

95 94 95 

TCN 

 

Glioma 

 

86 86 86 

85.46% 

 

Meningioma 

 

79 84 81 

 

Pituitary 

 

95 95 95 

 

Precision, recall & F1: macro-averaged (equally weighted avg. 

of 4 classes). 

 

 

From Table. 1, we have perceived the accuracy of Support 

Vector Machine (SVM) is 79.9%, K-Nearest Neighbor (KNN) 

is 91.83%, and Random Forest (RF) is 77.87% from recent 

studies [1]. In our pre-trained model, we acquired accuracy 

level of 98.16% in EfficientNet-B3, 96.66% in Inception-

ResNet-v2, 95.74% in ResNet-150v2, 88.07% in VGG16 and 

85.46% in Temporal Convolutional Network (TCN) [26].  

Besides, individual score for precision, recall and F1 is 

calculated for each classes like Glioma, Meningioma and 

Pituitary Tumor. We can clearly see that Deep Learning 

models like EfficientNet-B3 [23], Inception-Resnetv2 [24, 25] 

and Resnet150v2 [24] is clearly better than other models 

introduced in the paper. Above all, EfficientNet-B3 classifier 

achieved higher accuracy amongst all other models. 
 

V. DISCUSSION 

To figure out the early stage of brain tumor, we need an 

efficient MRI brain tumor classification for our medical 

therapy. So, considering our current medical tools, we can 

treat individuals before it’s too late. The main research is to 

discover a brain tumor classifier with high accuracy and 

performance. In the traditional image recognition of the brain, 

classification is carried out by using image segmentation. The 

complexity is lower than the other networks. Computation 

time is high, and the accuracy seems too low. The model's 

accuracy development is leading to a very demanding 

compensated sector. From SVM, RF, DT, KNN, and CNN 

algorithms convolutional neural networks model EfficientNet-

B3 [23] performed well in the image feature recognition of 

Brain Tumor Detection. So, we can utilize the use of tumor 

identification using these Convolutional Neural Networks to 

get high accuracy in less amount of time. Thus, we prefer 

selecting convolutional neural networks like EfficientNetB3 

for brain tumor identification. 

VI. CONCLUSION 

Brain is vital portion of human body which controls the 

overall activity of human body and maintain all the 

functionality. So, it is very much important to keep brain away 

from any harm. That is why tumor detection is very much 

important and has to be detected as soon as possible. By the 

grace of technology, we can improve the detection process by 

using different machine and deep learning algorithms. In this 

paper, different algorithms are introduced and studied for 

finding the better classification process. At the end, CNN is 

found most suitable deep learning method. Through 

Convolutional Layer and Max Pooling, feature maps are being 

extracted and get trained with a fully connected dense neural 

network. After training, we can classify MRI images with 

given labels attached to them. Whether the brain has Benign 

and Malignant tumors, we can detect with given MRI images. 

At this point, we found that the Deep Learning method CNN 

model EfficientNet-B3 performed very well at large-scale 

image pattern recognition. 
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