
Abstract— This paper presents a survey into the currently 
thriving research on using machine learning for COVID-19 
induced pneumonia detection through the use of radiographic 
scans, presents a brief review of the methodologies and assesses 
the classification results, and finally presents an alternative in the 
form of ultrawideband (UWB) imaging. Few works on UWB 
imaging is investigated and used as a source of inspiration for 
developing an UWB imaging system for detection of 
accumulation of  fluid in lungs. The goal is to extract information 
about dielectric property variation from backscattered UWB 
signals to detect pneumonia caused by COVID-19. An edge fed 
Vivaldi antenna along with a multilayer planar model for lung is 
simulated in CST microwave studio and subjected to UWB 
excitation. The backscattered signals in the form of S-parameters 
are analyzed with various Delay-and-Sum (DAS) algorithms and 
images are constructed for lung tissues of different permittivity 
and conductivity, where higher values are supported to allude to 
the infected lungs. 

Index Terms— UWB imaging, UWB antenna, ultra wide band, 
microwave imaging, COVID-19 detection, Deep Learning. 

I. INTRODUCTION

ORONAVIRUS 2019 (COVID-19) pandemic is affecting
countries all around the world as a leading cause for 

health complications and death. Originally referred to as 
Novel Coronavirus-Infected Pneumonia (NCIP), the COVID-
19 is highly infectious, and researchers are ardently working 
to develop more rapid, accurate and effective detection 
strategies to curb its spread. The COVID-19 testing methods 
currently available worldwide can be categorized into [1] [2]: 
a) molecular tests such as RT-PCR where respiratory tract
swab samples undergo a relatively long and cumbersome
process to transcribe RNA to DNA, and the presence of virus
is detected in the amplified DNA using certain chemicals, b)
antigen tests that detect certain proteins in fluid samples from
nasal swabs, providing a faster result but more false negatives,
c) antibody tests or serology tests that check for antibodies
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built up against COVID-19 in blood samples and thus cannot 
be useful for early detection of the disease. There have been 
studies into some more novel methods such as using 
breathalyzers [3] and sniff tests [4], but these methods need to 
be practically implemented in the field before their 
effectiveness can be judged. In addition to the diagnostic tests, 
an alternative approach employed by the doctors is 
radiographic examinations, such as chest X-Rays and CT 
scans from patients. The images are availed by the radiologists 
to search for visual indicators implying fluid accumulation and 
lung infection.  

Due to the limitations in physical prototype development of 
new technologies during a time of worldwide lockdowns and 
social distancing measures, many researchers have focused 
their efforts on studying such medical scans and developing 
automated detection systems based on machine learning 
algorithms. Such methods are expected to aid in developing a 
triage method for patient risk management. Additionally, 
ultrawideband (UWB) imaging has drawn extensive attention 
researchers in the recent years due to its promise in highly 
accurate and precise localization as well as employing 
relatively smaller form factor antennas. It is one of the 
modalities of microwave imaging and an emerging short-range 
wireless technology characterized by brief pulses (below 2ns) 
and negligible power spread over a very large bandwidth 
(greater than 500 MHz) [5]. In the past, researchers have 
implemented microwave imaging as a possible low health risk 
method of medical imaging of human body through 
microwave tomography where the spatial distributions of 
dielectric properties closely computed by solving nonlinear 
inverse scattering problems [6]. UWB radar methods are 
computationally simpler and aim to only identify the presence 
and location of anomalies in the environment based on its 
distribution of dielectric properties. The former uses both the 
incident (transmitted) and scattered (received) fields, while the 
latter only uses reflected signals from the imaging object.  
While microwave imaging has been used to detect a number 
of diseases in research literature, most of them are focused on 
the detection of solid objects such as tumors. The few 
instances of research focusing on detection of fluid 
accumulation in human organs have attempted to detect urine 
in bladder [7] or to identify pulmonary edema [8] or 
congestive heart failure using lamb lungs [9]. This paper 
continues the endeavor of our previous work [10] and focuses 
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on studying the possibility of utilizing UWB imaging in order 
to detect and localize fluid accumulation in the lungs for 
COVID-19 induced pneumonia detection. Non-invasive 
identification of such lung anomaly would significantly aid in 
the discovery of complications in COVID-19 patient treatment 
as the lung air sacs of COVID patients get filled up by the 
fluid leaking from the blood vessels. The resultant 
inflammation may hinder the patients’ oxygen absorption and 
thus cause difficulty in breathing. To avoid such cases from 
exacerbating into lung failure and even death in the worst-case 
scenario, any water accumulation in the lungs need to be 
identified as soon as possible. For this purpose, this paper 
integrates the recent literature regarding COVID-19 published 
since our previous review in Section II and revises the study of 
past microwave imaging applications to include UWB 
imaging system designs for additional kinds of medical uses in 
Section III. Based on the findings of section III and the 
methodology of UWB imaging methods explained in our 
previous work, Section IV presents our current system in 
development where an edge-fed Vivaldi antenna and a 
simulated human lung phantom have been designed in CST 
Microwave Studio and multiple imaging algorithms have been 
attempted for detecting the presence of water in the lung 
phantom. Section V concludes this work by identifying the 
limitations in the current prototype and suggesting future 
research directions.  

II. RESEARCH ON COVID-19 DETECTION

The research community has experienced a recent thrust in 
investigations into COVID-19 detection using machine 
learning methods. By using artificial intelligence, automated 
methods attempt to deduce the presence of COVID-19 by 
identifying characteristic manifestations in the lung. Ground-
glass opacification (GGO) is one known feature of initial CT 
scans of covid patients, whereas consolidative opacities and 
crazy paving patterns can be found in more intermediate 
stages [11]. However, there is some difficulty in 
differentiating COVID-19 from other lung infections or viral 
pneumonia patients suffering from such diseases can sport 
similar patterns in CT scans. This is not a problem exclusive 
to CT scans but an issue that is prevalent in other detection 
methods based on imaging as well. Similar automated 
detection systems using X-ray images have also been 
proposed. There are certain benefits to using X-ray images to 
CT scans as they are more economical, easily accessible, and 
relatively less harmful for the body in terms of ionizing 
radiation. However, the early stage GCO manifestations 
viewable in CT may be missed by X-rays due to their lower 
resolution and overlapping of projections [1]. A flowchart of 
the general workflow of machine learning algorithms is 
presented in Fig. 1.  

The classification results from recent literature that 
contributed to COVID-19 detection research are summarized 

TABLE I 
CLASSIFICATION RESULTS IN RECENT LITERATURE 

Source Scans Method Data set (total) Training data 
set (COVID) 

Test data set 
(COVID) 

Internal 
Validation External Validation 

Li et al. [12] CT CNN 4356 from 3322 patients 400 68 ---- SP: 88%, SN: 90%, 
AUC : 96% 

Xu et al. [13] CT ResNet + 
Location-attention 

618 images, 219 from 
110 COVID patients 189 30 ---- SN: 86.7%, PPV: 

81.3%, f1-score:83.9% 

Song et al. [14] CT DRE-Net 1990 images, 777 from 
88 COVID patients 466 233 AUC 99% 

AUC 99%, SN: 93%, 
PPV: 96%, f1-score: 
94%, A: 94% 

Hasan et al. 
[15] CT LSTM 321 CT scans, 118 from 

COVID patients 83 35 ---- A: 99.68%, PPV: 100%  

Wang et al. [21] CT GoogleNet 
Inception3 CNN 1065 COVID-19 images 320 

455 (for 
internal), 290 
(for external) 

A:89.5%, SP: 
88%, SN: 87% 

A:79.3%, SP: 83%, SN: 
67%, PPV: 55%, f1-
score: 63% 

Zhang et al. 
[18] X-ray CAAD 

43370 (X-VIRAL), 213 + 
509 images of which 106 
+ 493 from COVID 
patients (X-COVID +
Open-COVID)

No COVID-
19 data used 
for training 

---- ---- 
A: 78.57%, SN: 
77.13%, SP: 78.97%, 
AUC: 84.43% 

Turkoglu [17] X-ray COVIDetectioNet 6092 images  198 21 A: 100% 
A: 99.18%, PPV: 
99.48%, SN: 99.13%, 
f1-score: 99.3%  

Wang et al. [16] X-ray COVID-Net 
13975 from 13870 
patients, 358 from 266 
COVID patients 

258 100 ---- A: 93.3%, SN:  91.%, 
PPV: 98.9% 

Li et al. [19] X-ray COVID-GATNet 
10192 normal, 7399 
pneumonia, 399 COXID-
19 positive 

319 80 ---- A: 94.3%, PPV: 98.9%, 
SN: 91.9% 

Tabik et al. [20] X-ray COVID-SDNet 426 COVID positive, 426 
negative images 682 170 ---- 

Accuracy: 97.72 ± 
0.95% (severe), 86.90% 
± 3.20% (moderate), 
61.80% ± 5.49% (mild) 

Tuncer et al. 
[22] X-ray Cubic SVM 

150 normal and 
pneumonia images, 135 
COVID 

---- ---- 
A: 97.01%, SN: 
97.09%, PPV : 
97.11% 

---- 

A: Accuracy, SP: specificity, SN: sensitivity, AUC : Area Under Curve, Positive Predictive Value : PPV 
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in Table I and the general summaries of the works described in 
the next subsection.  

 
Fig. 1. General workflow of machine learning algorithms. 

A. Deep Learning Approach 
Li et al. [12] first proposed a 3D fully automated deep 

learning framework called COVNet that attempted to detect 
COVID-19 from chest CT scans collected from hospitals 
while trying to distinguish the results from Community-
acquired pneumonia (CAP) and other afflictions such as lung 
nodules, chronic lung inflammation etc. The authors used a 
convolutional neural network (CNN) using RestNet50 as the 
backbone. They extracted lung regions as the Region of 
Interest (ROI) using UNet based segmentation and 
automatically generate localization maps using Gradient-
weighted Class Activation Mapping (Grad-CAM) method 
without manually annotating the data.  

Xu et al. [13] designed an automated screening system for 
differentiating between COVID-19 and influenza-A viral 
pneumonia from a large dataset of CT scans collected from 
multiple hospitals. First a VNET20 based segmentation model 
was used to segment out infection regions, which were then 
operated on by a traditional ResNet-18 network structure 
alongside a modified model with location-attention 
mechanism. The overall result for a CT image was calculated 
using noisy-or Bayesian function. 

Song et al. [14] introduced a fully automated deep learning 
lung CT diagnosis system called DeepPneumonia with 
automatic detection of main lesion features such as GGO. 
They developed Details Relation Extraction Neural Network 
(DRE-Net) based on pretrained ResNet50 for feature 
extraction, and utilized Feature Pyramid Network (FPN) and 
attention module to interpret network outputs. They set up a 
publicly available online server where CT images can be 
uploaded for online diagnosis. They also distinguished 
between COVID-19 related and bacterial pneumonia and 
detected the latter with an AUC of 99%. 

Hasan et al. [15] used CT images from free and open access 
datasets to develop a novel method for feature extraction 
where they used a handcrafted descriptor formed using Q-
Deformed Entropy (QDE) in combination with deep learning 
features. A type of RNN called LSTM (Long Short-Term 
Memory) was used as the neural network classifier. They also 
discriminated between COVID-19 and pneumonia (not caused 
by coronavirus) with fairly high accuracy. 

Wang, et al. [16] proposed an open-source CNN design 
called COVID-Net that can be publicly accessed in github. 
They also established an open access benchmark dataset 
containing X-ray images from 13,870 patients with the help of 
different public repositories. The architecture was pretrained 
on the ImageNet dataset and later a trained model was 

developed with the help of COVIDx dataset. It also employed 
the Adam optimizer and a learning policy of slowing down 
learning rate with learning stagnation. GSInquire was used as 
an explainability method to verify that COVID-Net made 
decisions based on actual features found in X-Ray images. 

Turkoglu [17] used X-ray images from public datasets to 
build COVIDetectioNet, a COVID-19 diagnosis framework 
that commissioned a pretrained CNN based AlexNet 
architecture that was trained using transfer learning and 
utilized deep features from all layers including convolution 
layers. A relief feature selection algorithm allowed the reuse 
of information from pre-learned tasks and facilitated faster 
learning. The features were finally classified with the Support 
Vector Machine (SVM) classifier. 

Zhang et al. [18] proposed the confidence-aware anomaly 
detection (CAAD) model that replaced the classifier by an 
anomaly detector by treating the non-COVID viral pneumonia 
cases as anomalies. The model comprises a shared feature 
extractor (EfficientNet pretrained on ImageNet), an anomaly 
detection module that assigned scores to X-ray images, and a 
confidence prediction module that reduced false negatives 
through re-assignment of the low confidence samples for 
further medical testing. The CAAD model was trained using 
on the in-house XVIRAL dataset. An interesting feature of 
this study was the detection of COVID-19 cases for the in-
house X-COVID and the public Open-COVID datasets despite 
the training dataset having no COVID-19 patient X-ray 
images. The model achieved an AUC of 83:61% and 94.93% 
respectively by recognizing the characteristic features 
COVID-19 as anomalies compared to the healthy or viral 
pneumonia samples. 

The study by Li et al. [19] built a deep learning model 
named COVID-GATNet by combining the concepts of Dense 
Convolutional Network (DenseNet) and Graph Attention 
Network (GAT). The integrated collection of three public 
chest X-ray data sets containing COVID-19 positive images 
was expanded by scaling, rotation, brightness adjustment etc. 
DenseNet facilitated the reuse of features from previous layers 
and improve computational complexity. Multiple sets of 
independent attention mechanisms were also employed for 
better feature extraction. 

Tabik et al. [20] developed a publicly accessible balanced 
database of COVID-19 images called COVIDGR-1.0 that 
comprised chest X-ray samples of four degrees of disease 
severity, ranging from mild symptoms to the most severe ones. 
The authors proposed a COVID Smart Data based Network 
(COVID-SDNet) methodology that uses a CNN based 
classifier based on Resnet-50 initialized with ImageNet 
weights and trained with a transfer learning method. Smart 
data was generated through preprocessing that combined noise 
elimination, segmentation-based cropping and data 
transformation. The scans were segmented with the U-Net 
segmentation model, both ReLU activation and SoftMax 
activation was utilized for the CNN and Stochastic Gradient 
Descent (SGD) was used as optimizer. One noteworthy 
contribution of their work was the establishment of a protocol 
on the selection and annotation method for the dataset images, 

AJSE Volume 20, Issue 3, Page 77 - 86 ©AJSE 2021 Page - 79



 

created in collaboration with certified radiologists. The Grad-
CAM method was used to justify the decisions made by the 
trained model, along with some visual explanation by means 
of a heat-map. 

The study by Wang et al. [21] evaluated a deep learning 
algorithm using chest CT scans collected from hospitals and 
worked with radiologists to verify the accuracy of CT image 
feature extraction. After initial preprocessing involving 
Grayscale binarization, background area filling and color 
reversal, transfer learning was used with the help of modified 
inception model based on GoogleNet Inception3 CNN.  

Tuncer et al. [22] presented a novel cognitive method for 
COVID-19 detection that did not require a number of 
parameters. Their approach employed a machine learning 
model called the exemplar model where chest X-ray scans 
from public datasets were put through fuzzy tree 
transformation, exemplar division and multi-kernel local 
binary pattern (MKLBP). Additionally, an iterative 
neighborhood component (INCA) was utilized for useful 
feature selection. The paper investigated 16 conventional 
classifiers, among which Cubic SVM achieved the highest 
97.01% classification accuracy. 

 

B. Limitations 
While a significant number of COVID-19 detection 

methods involving X-ray and computed tomography scans 
report high accuracy, certain roadblocks still exist in 
employing these approaches for the development of a clinical 
triage method. The most common concern is the possible 
health risks because of the exposure to ionizing radiation, 
which are significantly more severe in CT. A chest x-ray 
normally imposes approximately 0.01 rem (10 millirem) on 
the patient’s body whereas the value 1 rem (1,000 mrem) for a 
full-body CT scan [23]. New York state department [24] 
addresses the possible health risks due to prolonged or 
repeated radiation, which are especially significant for 
pregnant women and children. Medical screening equipment 
are becoming scarcer with the exponential rise in the number 
of cases across the world, and the availability of medical staff 
is declining as their heavy workload continues and many of 
them succumb to the disease themselves.  

Additionally, the reported high accuracies and sensitivities 
are not always clinically significant as many datasets does not 
provide a complete spectrum of COVID-19 severity levels and 
predominantly focus on the most critical cases [20]. The 
machine learning methods based on datasets run the risk of 
failing to recognize low and moderate cases, which defeats the 
original purpose of early disease detection.  

The stability of several models, in terms of standard 
deviation, was not calculated and the size of training and 
testing dataset was sometimes unclear or too small. Many 
datasets also lack collaboration between radiologists and AI 
experts and do not follow a consistent protocol in the 
annotation process of imaging scans [20]. Tabik et al. also 
attributed the high sensitivities in past works to the bias in the 
highly used COVID-19 Image Data Collection where the 

small number of COVID-19 positive cases (comprised mostly 
of late-stage patients) present contain heterogeneous data [20]. 

The emergence of newer mutated virus strains is also 
triggering a sizable amount of dataset shift, and the 
classification-based approaches may see a decline in 
performance as a result [18]. All of these factors together have 
so far prevented them from being considered as universally 
applicable long-term monitoring tool. 

III. RELEVANT RESEARCH ON MICROWAVE IMAGING 
UWB frequency spectrum ranges between 3.1 – 10.6 GHz 

and can coexist with other wireless technologies with 
minimum interference. Its high resolution, moderately deep 
penetration in the human body, lack of unsafe ionizing 
radiation effects and antenna designs with comparatively small 
form factors have resulted in many researchers study the 
technology for medical imaging [25]. Our previous work [10] 
provided comparison among different UWB techniques for 
imaging lung for fluid accumulation purposes. To avoid 
repetition of information, this paper focuses on the 
information regarding implementation rather than the 
methodology of UWB imaging in the relevant papers.  

 
(a)                           (b) 

Fig. 2. Human torso phantom images containing (a) healthy lamb lungs and 
(b) lamb lungs that have been injected with 1 mililiter water. [26] 

 Rezaeieh et al.’s experimental work on pulmonary oedema 
detection through wideband antenna imaging can be 
considered the application of microwave imaging that 
contributed most significantly to detecting fluid accumulation 
in lungs and is particularly relevant to COVID-19 diagnosis. 
Through the imaging of a human torso phantom, they 
demonstrated the detection of water content as low as 1 
milliliter. The proposed clinical system also performed 
admirably when conducted with healthy volunteers, although 
the result did not have significant clinical value due to the 
absence of lung ailments and the location of the heart.  

The experimental setup included a portable Vector Network 
Analyzer (VNA) and an antenna array combined with a 
switching network. The antenna array was designed to operate 
in 0.7–1 GHz band. S11 parameter of the optimum design 
managed to approach -30 dB at resonant frequency 960 MHz. 
Data was collected from horizontally lying lung phantom or 
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human volunteers in a multistatic data collection from the 
back of the torso.  

This work suggested a novel frequency-domain imaging 
algorithm. First some preprocessing was performed to remove 
any reflections from skin due to the high permittivity of skin 
layer. For this purpose, the received electric field was 
calculated from the S-parameters measured by the VNA, 
following which the average value of these fields was 
calculated subtracted from each field. The fields were 
normalized and used to calculate the scattered electric field 
from each point (x, y) inside the imaged object. 

 

  (1) 

  (2) 
 
Here J1() is Bessel function of the first kind of order zero, km 

is the wavenumber of m-th frequency, (ρ, Φ) are the distance 
and the angle of each imaged point from the source, 
respectively. Despite the promising results, this work was not 
adopted for the method proposed in this paper as the 
experimental setup is difficult to replicate in the current 
situation of the world with COVID-19 pandemic related 
restrictions. Rezaeieh et al. [26] simulated the antenna in CST 
microwave studio, but the necessary data for imaging was 
collected experimentally without any simulation. Additionally, 
the artifact removal method is rather simple involving average 
subtraction and an average estimate of relative permittivity. 
No actual pulmonary edema patient was tested using the 
clinical system by the future works of their group, and the 
designed antenna did not qualify as an ultrawide antenna. 

The next work that aided our design was Wang et al’s [27] 
approach to breast cancer detection. While the end goal of 
their work was different, they designed a flexible UWB 
antenna array optimized for size and cost with a wearable 
design that may be applicable for lung imaging purposes as 
well. The antennas were first arranged in circular arrays, then 
assembled into 3 levels in groups of 4 to create a 3-D 
cylindrical array system. The antenna sports an 
omnidirectional radiation pattern with its -10dB bandwidth 
between 4.97 to 11.73 GHz with two resonant frequencies at 
5.7556 GHz (-25.386 dB) and 10.1 GHz (-29.085 dB). The 
maximum gain is found to fall between 2.5 to 4 dB. The 
simulation was performed in CST using the time domain finite 
difference time (FDTD) solver, where an MRI-based breast 
model and a tumor of 5mm diameter was placed in the 
software workspace. CST provided human tissue was used for 
the breast phantom layers and the “Biological Property 
Definition” macro was used to model the incidence dependent 
dielectric prosperities with the help of Cole-Cole expressions. 
Imaging results were generated by using the classic and robust 
Delay-and-Sum (DAS) algorithm.  

Abdelhamid and Allam [28] implemented their proposed 
design for lung cancer detection practically and found 
satisfying degree of match between simulated and 

experimental characteristics of the antenna. They designed a 
cupcake UWB antenna using Rogers RO4350 (lossy) material 
as a substrate. The achieved frequency band lies within 2.9 
GHz to 12 GHz. The authors used CST simulation for 
simulating comparing the S-parameters of the UWB antenna 
for simulated lung phantom models corresponding to different 
stages of lung cancer. No images for visualizing the cancerous 
regions were generated. 

 

 
 (a) (b) 

Fig. 3. (a) Implementation of cupcake antenna and (b) Simulated and 
measured S11 parameter by [28]. 

 
Fig. 4. Breast imaging system developed in [29]. 

Islam et al. [29] developed a computer controlled and 
microcontroller-based microwave imaging system where they 
employed a compact side slotted tapered slot antenna with 
radiating fins. They set up the prototype of a clinical system 
consisting of a mechanical rotating platform that houses a 
breast phantom subject to transmitted UWB signals from port 
1 of an Agilent E8358A VNA. The receiving antennas 
arranged around the phantom are switched in order through 
the VNA and MATLAB program in PC and the backscattered 
data is captured by the VNA in the form of S-parameters. The 
designed antennas for this purpose were Vivaldi antennas with 
2.80 to 7.00 GHz bandwidth. After data collection, breast 
tumor detection was done through imaging with both DAS and 
a newly proposed Iteratively Corrected Delay and Sum (IC-
DAS) algorithm that demonstrated a slight increase in image 
clarity compared to DAS. 

IV. PROPOSED METHOD 
The human tissues with differing relative permittivity reflect 

any UWB signal penetrating through the tissue layers, and the 
amount of attenuation that the UWB signal undergoes also 
varies across layers due to the uneven conductivity of the 
tissues. The information gained from studying the 
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backscattered and the transmitted signals can thus be utilized 
to identify irregularities with different permittivity with 
respect to their neighboring tissues. This work attempts to 
build an imaging system that characterizes such dielectric 
property distribution by transmitting microwave pulse signals 
from a pair of antennas placed close (a few millimeters) to a 
human torso phantom, one in the front and one in the back.  

 

        
 (a) (b) 

Fig. 5. (a) Antenna setup and (b) Block diagram for the proposed imaging 
system. 

The antennas and the torso phantom were both simulated 
with the time domain solver using CST Studio Suite 2021 on a 
Windows 10 machine, using an AMD Ryzen 9 4900H 
processor with 16 GB RAM and NVIDIA GeForce RTX 2060 
graphics card. The multilayer planar model [30] for the torso 
was derived from a simple human male model called “Duke” 
from an extension of the Virtual Human data set. A section of 
the Duke’s anatomy passing through the heart has been 
utilized to build the model. 

 
 

 
Fig. 6. Axial section of the Duke’s anatomy for building the multilayer 
planar model [30]. 

 

 
Fig. 7. Multilayer planar model developed from the Duke’s anatomy [30]. 

The dielectric properties for the body tissues are taken from 
the human body voxel models in CST that sport frequency 
dependent permittivity and loss tangent characteristics. While 
modeling a lung that is affected by COVID-19 induced 
pneumonia, the lung layer in the model is modified to have 

higher conductivity and permittivity values compared to the 
case for normal lungs. An increase in conductivity and 
permittivity as well as a linear correlation between the mean 
of the maximum loss tangent and the lung water content is 
observed with increasing fluid content in rat lungs [31], so it is 
assumed that a similar pattern may be present in human lung.  

The previous findings of Nopp et al. [32] also support this 
theory where they defined the ratio of the air volume and the 
volume of the condensed matters as filling factor F. The 
researchers found lower conductivity and permittivity in calf 
lung at higher values of F which correspond to higher air 
content (in other words, lower fluid content), and predicted an 
increase of conductivity and permittivity due to storage of 
liquid in alveoli during pneumonia. The experimental results 
approximated that at 100% air content the lung permittivity 
and conductivity was 43 and 0.05, and decreased inversely 
proportional to √F at other F values. We considered a lung 
50% full of air and 50% full of fluid to have a permittivity and 
conductivity of 63.64 and instead of the 49.38 default value in 
CST, and conductivity of 0.5445 instead of the default 0.434. 
 

        
 (a) (b) 
Fig. 8. (a) Front view and (b) Back view of Vivaldi antenna. 

During the simulation, two different antenna designs were 
used to assess the imaging. A simple rectangular patch 
antenna is considered to serve as comparison to the final 
design. For distinguishing between healthy and pneumonia 
affected lungs, we used two 5.8GHz resonant frequency edge-
fed Vivaldi antenna based on [33]. The affordable and widely 
used FR4 material was used as a substrate in both designs. 

For every imaging system we simulated the imaging system 
in CST using a Gaussian excitation signal and collected the S-
parameters as a measure of the backscatter. In addition, the far 
field 3D plots and SAR values were studied to characterize the 
antenna and assess whether its radiation levels are within the 
official safety standards. Originally, we opted for a semi-
realistic shape for the human torso (elliptical cylinder in Fig. 
9) with every layer having thickness values (in millimeter) as 
reported in Table II. Compared to the layers seen in Fig.7, 
minor changes were made to the model for sake of ease of 
modelling.  
 

TABLE II.  LENGH OF INDIVIDUAL LAYERS FOR SIMULATION OF 
ELLIPTICAL LUNG MODEL  

Skin Fat Muscle Bone Heart Lung Bone Muscle Fat Skin 
3 2 20 6 84 70 6 20 2 3 

Thickness values are given in millimeter.  
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Fig. 9. Elliptical lung phantom model used with simple patch antenna. 

 
Fig. 10. Planar lung phantom model used with Vivaldi antenna based on [33]. 

However, the computation complexity for this model and the 
previous antenna design was beyond the capacity of the 
machine in use as it also had to calculate the large number of 
frequencies present in the antenna’s frequency band and the 
corresponding dielectric constants for every human tissue 
layer. So the simpler patch antenna with a resonant frequency 
of 1.95 GHz was used for this model. Its bandwidth is found 
to be < 200MHz so it does not qualify as ultrawide band. 

  

 

Fig. 11. Return loss of simple rectangular patch antenna. 

TABLE III.  DIMENSIONS OF DESIGNED ANTENNAS (IN MILLIMETER) 

Rectangular Patch 
Patch Width W 36.27 
Patch Length L 36.27 

Ground plane width Wg 72.54 
Ground plane length Lg 72.54 

Feedline width Wf 2.932 
Feed inset Fi 4.8 

Substrate height hs 1.6 
Conductor height ht 0.035 

 

Edge-fed Vivaldi 
Slot line width Ws 0.986 
Throat width Wmt 3.037 

Coupler Width Wmc 0.7623 
Substrate height T 1.5748 

Distance form cavity to coupler center Smc 0.3812 
Strip line stub radius Rs 3.793 

Conductor height MT 0.035 
Width of strip line Ls 0.762 

Throat length Lmt 10.32 
Coupler Length Lmc 4.913 

Flare length Lf 76 
Taper width Ft 40 

Diameter of slot line cavity Dc 4.913 

 

 
 

Fig. 12. Return loss of vivaldi antenna. 

 

 
Fig. 13. Gain of vivaldi antenna at 7GHz. 

As shown in Fig. 10, the Vivaldi antennas were used with 
the simpler planar model, one of each antenna placed in front 
of the skin layer. The design parameters for the antennas are 
given in Table III. Fig. 12, 13 and 14 demonstrate the 
performance of Vivaldi antenna which is shown to be 
operating as an UWB antenna with resonant frequencies 4.5 
HHz, 5.75 GHz and 6.97 ≈7 GHz. The maximum Specific 
absorption rate (SAR) of 0.971201 W/kg is also well below 
the IEC 62209-1 limit of 2 W/kg averaged over the 10 g of 
tissue, as demonstrated in Fig. 14. 
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Fig. 14. SAR of vivaldi antenna at 7GHz. 

 
Fig. 15. Delay-and-Sum Algorithm implementation in MERIT. 

The images were reconstructed by the DAS, CDAS and 
DMAS algorithms with the help of the open-source 
Microwave Radar-based Imaging Toolbox (MERIT) [34].  

 
(a) 

 
(b) 

 
(c) 

Fig. 16. Images found using rectangular antenna for DAS (a), CDAS (b) and 
DMAS (c). 

 

Fig. 17. Intensity values found using Vivaldi antenna as 3D scatter plot. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e)  

(f) 
Fig. 18. Images found using Vivaldi antenna for DAS (a,b), CDAS (c,d) and 
DMAS (e,f) for normal lung (left) and lung with 50% fluid (right).  
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The S-parameter values were exported from MATLAB as 
ASCII text files. Then the information about antenna 
locations, the frequencies used for simulation and the complex 
values of the S-parameters were fed to MERIT using 
MATLAB. The intensity of the points of the different layers 
(regardless of whether the planar or the elliptical model was 
used) are mapped into an imaging domain, and a 2D cross 
section across xy plane taken for observation. For a healthy 
lung, the images in Fig. 17 and Fig. 18 (left column) are 
obtained. A number of rings are found in all pictures that 
correspond to the different tissue layer intersections. The 
brighter the image pixels in a ring, the more the contrast 
between the dielectric properties of the two layers surrounding 
it. The images generated with patch antenna have bright colors 
near the edges which imply a large amount of signal was 
backscattered from the skin layer, and the distinction between 
different layers is blurred. The rings are more evident in the 
images (Fig 18 (b), (d), and (f)) generated using the Vivaldi 
antenna due to its large bandwidth and resultant higher 
resolution. The images in Fig. 18 (right column) showing lung 
with higher fluid content have some visual differences 
compared to the ones for healthy lung. The amount of contrast 
is not very obvious visually so the immse() function in 
MATLAB has been used to calculate the mean-squared error 
(MSE) between the pixel data of healthy and unhealthy lung 
images. The mean-squared error is found to be 352.8194, 
193.0381 and 212.8439 respectively for DAS, CDAS and 
DMAS. While we have used frequency dependent body tissue 
layers in the model, we have not yet found any elegant way to 
extract that information for all frequencies and integrate the 
values into the delay calculation process between imaging 
point and antenna, which may be the reason for the low 
contrast. 

 

V. CONCLUSION 

The designed Vivaldi antenna has many attractive features 
like compact size, large bandwidth, and high directivity, but 
shows a low radiative efficiency which should be improved in 
future works. in the practical implementation of this work, we 
will aim to surround the torso with a wearable system 
comprising an antenna array rather than just two antennas. 
With a more powerful machine and access to laboratory 
equipment, more realistic and practical modelling of antennas 
would be possible. Another concern is the degree of difference 
found between healthy and pneumonia affected lung. So far 
we have used already existing popular algorithms, but the final 
goal of our work is to build a system using a novel algorithm 
that will accurately detect even the smallest change in the 
dielectric property of lung tissues. The literature review in 
Section II draws attention to the high detection accuracies 
reported by recent machine learning algorithms, but the 
limitations inherent to those methods imply that machine 
learning methods alone cannot provide a quick response to the 
rapidly growing need for prompt COVID-19 diagnosis. If 
microwave imaging methods, that are less expensive and more 
portable by nature, become widespread and integrated into 
medical imaging, then it possible that UWB imaging can work 

together with machine learning to provide quick radiological 
scans with little to no health risk.  
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