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Abstract: Diabetic retinopathy (DR), a microvascular 

complication of diabetes, has become a major global health 

problem, affecting vision and potentially leading to blindness if 

left untreated. Optical Coherence Tomography Angiography 

(OCTA) has become a transformative imaging technique for the 

detection and analysis of the choriocapillaris and retinal 

microvasculature, enabling the identification of preclinical 

microvascular abnormalities that precede visible DR symptoms. 

This review examines the role of machine learning (ML) and 

deep learning (DL) learning methods in OCTA-based DR 

classification. We summarize recent advances in convolutional 

neural networks (CNNs) for automated feature extraction and 

accurate diagnosis, as well as the various OCTA datasets used in 

these studies. The advantages of OCTA imaging over fundus 

photography, particularly for early-stage DR detection, are 

highlighted. Furthermore, we propose a novel DL-based system 

for DR classification that compares its performance with 

traditional ML methods based on manual feature extraction. 

Challenges related to clinical delivery, such as data variability, 

model interpretability, and integration into clinical workflows, 

are also discussed. Finally, we highlight future research 

directions to address these challenges and improve the adoption 

of Deep Learning  models for OCTA-based DR diagnosis. 
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I. INTRODUCTION

Diabetes, also known as hyperglycemia, is a group of 
metabolic diseases that affect both insulin secretion and 
function. Diabetes-induced chronic hyperglycemia has been 
linked to kidney, blood vessel, eye, nerve, heart, and kidney 
damage over time. It should be emphasized that the worldwide 
occurrence of diabetes is projected to increase in the 
forthcoming years. In 2017, diabetes diagnosis incurred a total 
cost of $327.01 billion in the United States, encompassing 
$237 billion in direct clinical expenses and $90.01 billion 
attributed to low efficiency. [1]. Diabetes is expected to affect 
642 million people in the world by 2040, according to some 
estimates [2]. 
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Diabetes wreaks havoc on the body's arteries and nerve 
cells, including those in the eyes. Diabetic retinopathy is a 
negative health outcome of long-term diabetes and poor blood 
sugar control for the eyes (DR). According to reports [3,4], 
DR was responsible for 0.8 million cases of blindness 
worldwide in 2020, ranking sixth overall. The two major types 
of DR are PDR, which is linked to the formation of NV, and 
NPDR, which is divided into three levels: severe, moderate, 
and mild. [5,6]. Patients exhibit various ocular changes at each 
stage [7].When DR is routinely evaluated [8], it has been 
discovered that the prevalence of blindness among diabetes 
patients decreases [9], [10], [11]. Retinal imaging, commonly 
referred to as retinal screening, is acrucial method for the 
precise, early diagnostics of eye illnesses, which possesses the 
ability to decrease the prevalence of blindness worldwide. The 
importance of this screening has only grown with 
technological advancements over the past few decades. 
Currently, dye-based FA is the benchmark for determining the 
amount of vascular leakage and the existence of ischemia [12], 
[13], [14]. FA can detect vascular integrity, MA, blood vessel 
perfusion loss, and raised artery permeability, causing edema 
and NV. But, FA is an intrusive examine that, in a small 
proportion of patients, may cause serious negative effects [15]. 
Therefore, it is not frequently used as a screening procedure 
because of its potential side effects.  

Technology advancements have made it possible to use 
OCTA as a quick, non-invasive imaging modality to look at 
capillary microvascular changes. Without the use of 
fluorescein dye, OCTA delivers depth-resolved imagining of 
the ocular microvasculature [16], [17]. OCTA has proven to 
serve as a useful instrument in the treatment of diabetics with 
or without microvascular disease abnormalities. Currently, a 
non-invasive vascular imaging technique known as OCTA has 
the benefit that it is capable of anticipating the initial stages of 
retinopathy caused by diabetes. The benefits of early detection 
of retinal microaneurysms in a microvascular system are 
included. However, a few studies continue to classify DR 
using retinal fundus images rather than retinal OCTA images. 
However, OCTA images can provide precise information 
about blood vessels that exist in the retinal capillary system. 

With the assistance of OCTA images and a CNN[72], we 
aim to construct an automated DR detection and classification 
system and test the system's viability. Recent results from a 
DL application for retinal image automation processing have 
shown expert-level precision in the detection of DR severity. 
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We aim to further facilitate access to DR screening and 
enhance diagnostic precision. This review aims to utilize DL 
and ML methods to identify diseases in the retina related to 
DR. We anticipate that by creating these algorithms and using 
them on real patients, we will be able to identify serious 
diseases early. The prompt intervention that results from this 
early discovery can then stop blindness. DL is a subset of AI 
that is built on DNN. It has produced great advances in 
clinical imaging, notably in picture categorization and pattern 
acknowledgment. In eye medicine, there is a growing interest 
in using DL algorithms to evaluate OCTA images. According 
to the investigation, DL algorithms performed well on OCTA 
image evaluation for disease detection, future estimation, and 
image quality monitoring, implying that incorporating the 
DL method might enhance disease assessment accuracy and 
medical process efficiency. 

A. Drawbacks of Fluorescein Angiography (FA) 

The invasive imaging procedure known as fluorescein 
angiography (FA) requires continuous dye injection and takes 
10 to 30 minutes to complete [17]. It provides two-
dimensional views about an extensive field of view, which 
permits dynamic blood flow visualization. Although retinal 
capillaries can be seen, the basic intra-retinal aspects of 
capillary networks are not visible on their own. FA, in 
particular, corresponded to surface retinal veins while not 
revealing deeper retinal capillaries, most likely caused by light 
dispersion in the retina [18-21]. The choroidal vessels, which 

are difficult to see in DM eyes, are also difficult to see in FA. 
Still, FA can be used to detect dye leakage, pooling, and 
staining patterns [22]. FA is not a good procedure to use 
frequently in clinical practice because it is invasive, 
expensive, and time-consuming. Furthermore, while FA is 
generally thought to be safe, the dye can cause nausea, allergic 
reactions, and, in rare cases, anaphylaxis. Patients who require 
periodic check-up scans or who are unable to deal with the 
negative consequences of dye injections may not be fit for the 
FA procedure. 

B. Pros of Optical Coherence Tomography Angiography 

(OCTA) 

The most recent simple angiography method, OCT 
angiography (OCTA)[61,62], does not involve ocular dilation. 
Images of the choriocapillaris (CC) and retinal capillary 
plexuses are produced at high resolution without the need for 
contrast. Modern technology and the acquisition of hardwires 
have made it possible to image blood flow in the retina in 
grayscale using OCTA. Both averages as well as specialized 
perfusion density maps may be generated. OCTA can identify 
MA, non-perfusion areas, IRMA, and NV[63,64], all of which 
are DR variations. OCTA outperforms FA in revealing non-
capillary perfusion regions because the imaging is not 
distorted by leakage. [64]. Fig. 1 shows optical coherence 
tomography angiography (OCT-A) images illustrating various 
severities of diabetic retinopathy. 

 

 
Fig. 1. Examples of a series of 3 × 3 mm2 superficial capillary plexus (SCP) and deep capillary plexus (DCP) optical coherence tomography angiography (OCT-

A) images illustrating different severities of diabetic retinopathy. (A1–E1): SCP OCT-A images illustrating the alteration of the FAZ area and the surrounding 
vasculature from no DR to PDR.[67] 

 
Even before the disease is symptomatic, OCTA offers a 

dye-free technology that can be employed to spot 
angiographic symptoms of DR. OCTA techniques enable 
imaging and thorough assessment of alterations in the retinal 
microvasculature [67]. This is important because OCTA can 
more commonly be utilized than FA to check patients' eyes 
consistently. Moreover, OCTA gathers data faster than FA. 
The OCT platform OCTA was created based on the 
conventional OCT and is often utilized. Furthermore, 3-D 
resolution is a feature of OCTA data. Individual capillary 
plexuses are visible and can be assessed. The segmentation of 
the ocular vasculature can also be further altered and  
 
customized to produce images of additional layers, like the 
intermediate capillary plexuses (ICP), which aid in the 

visualization of diseased characteristics not seen in customary 
dye-based angiography[68,69]. 

In this study, we discuss the requirement of a technology 
like OCTA in the diagnosis of DR and discuss developments 
that have a significant influence on the therapy and early 
identification of DR. Knowing the frequency of diabetes and 
the enormous burden that DR imposes, we attempt to provide 
an accurate depiction of the numerous works emphasizing the 
significance of OCTA usage in DR patients. In this paper, we 
will present a summary of ML in OCTA for retinal disease 
categorization. The next part discusses the fundamental 
concepts of machine learning, as well as the ML 
implementation pipeline and the distinctions amid classic ML 
methodologies and DL. It has been established that 
quantitative OCTA [73] characteristics may be used for 
machine learning categorization of various retinopathies. DL-
based solutions for automated OCTA picture processing and 
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illness categorization have also been investigated. In this 
study, we discuss recent advances in measuring OCTA 
features, ML and DL image analysis, and classification. 

Color fundus photography has been the primary data source 
for most published AI diagnostic system experiments to date. 
One of the most widely used forms of clinical imaging, fundus 
photography has long been accepted as a reliable method of 
diagnosing and monitoring retinal disorders. When it comes to 
microvascular aberrations around the fovea, for example, and 
layer information of the retina, fundus images fall short. 

The following is the outline of this paper: The materials and 
procedures of the study are described in Section 2, while its 
results and interpretations are offered in Section 3. Part 4 
describes the accessible OCTA datasets, while Section 5 
details the discussion and conclusions from the review of DR 
classification models and datasets. Section 6 discusses the 
research gap of the method. Section 7 explains the proposed 
methodology. The various performance indicators for 
categorization are detailed in Section 8, while the research and 
potential future scope are presented in Section 9. In Section 
10, we conclude this systematic review. 

II. MATERIALS AND METHODS 

A. Search Criteria 

We conduct the recommendations in the 
PRISMA declaration [24] when conducting this systematic 
review. The analysis involved the search of several databases, 
comprising PubMed and GoogleScholar, Scientific direct for 
the following phrases, along with MeSH terms and synonyms: 
OCTA   or as well as NPDR and proliferative Diabetes 
Mellitus due to diabetes or diabetics retinopathy PDR as well 
as DL or ML or CNN. 

B. Inclusion and Exclusion Criteria 

The purpose of the study was to identify analyzes that 
addressed the need for using OCTA to identify diabetics with 
DR as well as its automated applications. To ensure the 
breadth of the study, only recent studies from 2015 to 
2024were selected. Case reports, letters, and studies 
employing time-domain OCT were excluded; only English-
language, peer-reviewed journal articles were considered. 

B. Literature Review 

A total of 325hits in PubMed, 115 in Google Scholar, and 
110 in Science Direct were found employing the search 
mentioned above, yielding 550 records. Due to 225 items 
being duplicates, we removed them and the remaining 325 
titles and abstracts were then subjected to the predefined 
screening process. We followed a strict screening for 
population, image modality algorithm type, and publication 
category because the goal at this time was not to be over-
inclusive.   As a result, 82 final articles were included and 243 
titles were excluded. 

 

 
Fig. 2.PRISMA Diagram Illustrating the Systematic Article Selection Process 

for the Literature Review. 

III. RESULTS AND DISCUSSIONS 

There are a variety of ways to automatically diagnose and 
grading of DR in the state of the art. Most previous research 
relied on fundus images for detecting DR and segmenting 
retinal blood vessels. The recently developed retinal scanning 
technology known as OCTA may extract far more information 
from the retina than conventional fundus imaging. 
Particularly, when compared to a traditional fundus image, 
OCTA can resolve even the smallest vessels of blood in the 
retina, making all microaneurysms visible with a great deal 
greater clarity. However, practically all of the research on 
automated DR identification up to the end of 2020 remained 
primarily focused on using traditional fundus images, and all 
DR identification techniques produced by OCTA are still in 
the early stages of advancement. As technology advances, it is 
expected that OCTA will eventually be another traditional 
fundus imaging. Thus, it is essential to create new techniques 
that can make use of OCTA to enable the early diagnosis of 
DR. 

 

 
Fig. 3.FAZ structure in the eyes of NDR, mild/ moderate NPDR, severe 

NPDR, and PDR participants from OCTA image. 

A. Application of OCTA in Diabetic Retinopathy Diagnosis 

Different researchers have adopted several segmentation 
and classification strategies to accurately identify the presence 
and development of the DR. Nonetheless, the use of powerful 
OCTA in diagnostic methodologies is limited. Most of the 
authors have selected color fundus images for the automated 
prediction of DR. So, there is a shortage of works in the 
literature using OCTA, and we strongly believe that this non-
invasive technology could create wonders in the field of 
automating ophthalmological disease predictions such as DR. 
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In this article, we discuss the usage of ML and DL for the 
categorization of diabetic retinopathy. 
 
1)Machine learning in Optical Coherence Tomography 

Angiography for DR prediction and classification 

Quantitative parameters of OCTA samples, which have 
been employed in many investigations, are examined in the 
background of retinal disorders in a current evaluation of the 
literature. Machine learning is an AI method that uses a 
classifier like a neural network, SVM, or random forest 
supplied with characteristics that were manually created (RF). 
Over the years, several machine learning algorithms have been 
developed. Popular methods include linear regression, k-
nearest neighbors, and SVMs. Typically these algorithms for 

categorising retinal images need two steps. Computer vision 
and automatic learning. To extract attributes or measures from 
an image, the person who using it needs to first carry out 
digital image processing. After the features have been 
collected, the second component may be utilized to train the 
ML prototype. The efficiency of the prototype must be 
evaluated following training. Machine learning models are 
typically evaluated using common metrics like accuracy, 
Particularity as well and sensitivity. The sensitivity of the 
prototype is defined as its capacity to recognize examples with 
the disease, while the specificity is defined as its ability to 
isolate instances without the sickness. 

 

 
Fig.4.Classification of DR using OCTA images based on machine learning. 

 
Sandhu et al. [25] were able to identify DR by analyzing 

OCTA images using an SVM classifier. These characteristics 
included vasculature density, vasculature caliber, and FAZs. 
Eladawi et al.[26] developed an OCTA-based CAD system for 
diagnosing diabetic retinopathy, employing RV division, 
image-derived makers, and an SVM-based categorization. 
Utilizing a combined MGRF prototype, the system delineates 
the development of deep and superficial blood vessels in 
vessels in both diabetic and non-diabetic individuals, based on 
a stochastic method. Their method, which uses biomarkers 
derived from OCTA images, can be used to recognize a wide 
range of choroid and retinal diseases. The AUC, VVD, and 
DSC for the original picture without the GGMRF and RDHE 
models are 56.71, 58.33, and 54.56, respectively. For the 
improved picture, the AUC was 0. 96percent, the VVD was 0. 
79 percent, and the DSC was 0.96 percent. 

The study conducted  by Eladawi et al. [27] involved 23 
healthy eyes and 82 diabetic retinopathy (DR) eyes. The 
authors extracted features such as vessel density (VD), blood 
vessel complexity (BVC), and the width of the foveal 
avascular zone (FAZ). They made use of an SVM for 
classification purposes, overall with a radial basis function  
 
 

(RBF) kernel. The model achieved an accuracy of 94.3%, with 
a sensitivity of 97.9% and specificity of 87.0%. AUC was 
92.4% with a Dice Similarity Coefficient (DSC) of 95.8%. 
Alam et al. [28] showed that localized quantitative OCTA 
analysis might be used to stage Limits, NPDR patients, and 
PDR patients (proliferative DR). This paper compared 
measurements taken throughout the entire picture to those 
taken using a moving window. In this investigation, we 
employed eight parameters, including foveal density (FD), 
blood vessel density (BVD), and vessel complexity index 
(VCI) for the SVP, alone and FAZ area (FAZA) for the DCP. 
Using localized complexity maps, researchers were able to 
pinpoint regions of the PDR eye with a higher concentration 
of blood vessels. In this study, we employed a total of 16 
attributes, including both global and local aspects of the 
images. To choose the best iteratively qualities for 
categorization, the investigation used a logistic regression 
model with backward elimination. This study found that, out 
of a total of 16, the FD, shifting-window features VCI, and 
BVT performed the best, with stated accuracy levels of 85.10, 
91.26, and 87.62 percent, respectively. The combination of 
these three characteristics led to a 94.75% accurate 
categorization performance. 

Aslam et al.[29] used machine learning to categorize 
healthy individuals as either diabetic or nondiabetic based on 
several variables. Decision trees, logic regression, random 
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forests, and other ML approaches were compared in this study. 
The classifier based on random forests accomplished an AUC 
of 0.80 for binary identification of diabetes-related eyes from 
healthy eyes, whereas the logistic retrogression prototype 
yielded an AUC of 0.91. Overall, the findings of the review 
indicate that ML may be used for both the early staging of 
NPDR and the diagnosis of diabetes. According to the results 
of this research, a vascular and vessel density areas are the 
most telling features for classifying DRs. Capillary vascular 
intensity changed quantitatively, indicating a reduction in 
blood flow. This suggests that features based on OCTA 
intensity may one day be employed for illness detection. 
Working together to generate a 94.75% accurate 
categorization performance. A CAD system combining OCTA 
and OCT features for the categorization of NPDR was 
investigated in another study [30]. The research gathered data 
on four Optical Coherence Tomography Angiography 
features, including FAZA, BVD, BVC, and bifurcation points, 
and three OCT characteristics, including curvature, 
reflectivity, and thickness. In addition to these demographic 
factors, we additionally factored in age, gender, HbA1c, 
hypertension, dyslipidemia, and edema prevalence. To do 
classification using machine learning, a multi-stage random 
forest classifier was used. The first random forest separates 
eyes with DR into those with the disease and those without 
using a binary classification. If the eye is determined to have 
DR, a second casual forest classifies the severity of the 
condition as either mild or severe. Using only OCTA 
characteristics, the study claims 0.94% accuracy; with more 
detail, including OCT and the medical data, the categorizer 
reaches a 0.98% accuracy. 

Moreover, recent research Alam et al.[31] has revealed that 
retinopathies possess multiple classification methods. Six 
quantitative OCTA parameters- namely, VPI, BVD, 
BVC,FAZCI, BVT, and FAZA were used to classify and 
individually stage retinopathy in a group of well participants, 
NPDR patients, and SCR patients. Both the SVP and DCP 
were mined for all of their characteristics. In addition to 
distinguishing between nasal retinal quadrants, superior, 
temporal, and inferior, we also measured BVD at varying 
eccentricities. As a result, the research used backward 
omission to choose the most effective optical feature sets for 
multi-task categorization. It was found in this research that 
FAZCI(D), BVT, BVD(S-6mm), and FAZA(S) are four 
sensitive traits that may be used to distinguish between 
healthy, NPDR, and SCR individuals. Scatter plot analysis 
demonstrates strong discrimination between the three groups 
of participants (healthy controls, DR, and SCR). Finally, it 
indicated a sensitivity of 95.01% for DR against SCR, a 
sensitivity of 92.18% for NPDR staging, and a sensitivity of 
93.19% for SCR staging. 

A CNN and SVM-based DR diagnostic paradigm was 
presented by Zaylaa et al. [32]. Where required, they 
downsized the OCTA images and converted them to binary or 
grayscale. CNN was used to identify features, which were then 
fed into the SVM algorithm. Their method for identifying and 
categorizing DR cases was 88.88% sensitive and 95.55% 

specific. Using multifractal geometry, Abdelsalam and Zahran 
[33] suggest a new method for early identification of DR. 
They used macular OCTA analysis to detect NPR in its 
earliest stages of NPDR. Moreover, the SVM algorithm, a 
supervised ML technique, was used to implement automation 
into the diagnostic process and boost accuracy. Their method 
of categorization was 98.5 percent accurate. Extracting texture 
information from OCTA photos has been the focus of work by 
Liu et al. [34], who used a DWT. To classify wavelet features 
into distinct categories, four diverse machine learning models 
were utilized: LR, LR-EN, SVM, and XGBoost. The best DR 
detection results were obtained with LR-EN and LR, with 
diagnostic precision of 82%, and AUCs of 84%, Sensitivity of 
84% and specificity of 80%. 

Another recent work [35] employed SVM classifiers 
developed by a genetic evolutionary method to categorize 148 
samples from 78 diabetic retinopathy patients with PDR and 
NPDR using OCTA vascular density maps at SCP, DCP, and 
total retina (R) levels. In three independent models, their 
algorithm diagnosed PDR and NPDR in all three layers of 
vascular density maps with up to 85% accuracy. The extensive 
tissue of the retinal level blood vessel volume maps executed 
the best, distinguishing PDR and NPDR with 90% accuracy. 
Table 1 summarizes some of the work in ML for 
autonomously segmenting or diagnosing DR from OCTA 
images. According to Abtahi et al. [37], differential CLV 
analysis promotes the classification of diabetic retinopathy 
using OCTA. The use of an SVM-based classifier using 
features taken from the whole image and from specific regions 
in the retina for CLV analysis enhanced binary classification 
accuracy from 77.45% to 89.26% and multiclass accuracy 
from 78.68% to 86.23%, highlighting the role of the capillary 
changes in the DR development. Machine learning algorithms 
such as random forest and gradient boosting machine were 
used by Li et al.[39] to classify DR using clinical data and 
parameters of 203 patients from OCTA. The predicted 
accuracy of AUC values is high on multiple classifications of 
DR. 

 
TABLE I  

SUMMARY OF RESEARCH WORKS ON AUTOMATING DR DIAGNOSIS IN THE 
STATE-OF-THE-ART USING MACHINE LEARNING METHODS 

Author 

and Year 
Database Method Results (Best) 

Sandhu et 
al. 2018 

[25] 

DM Type 2 
Eyes: 106 

DM without 
DR: 23 

Mild NPDR 
Eyes: 83 

Features: BVD, BVC, 
and the size of the 

FAZ 
Classification: SVM 

Accuracy = 94.3% 
Sensitivity= 97.9% 
Specificity=87.0% 

AUC = 92.4% 
DSC = 95.8%. 

Eladawi, 
2018 [26] 

OCTA 
images, 

University of 
Louisville, 

USA 

Vessel segmentation, 
Local feature 

extraction, SVM 

Accuracy=97.3% 
Sensitivity=97.9% 
Specificity=96.4%  

AUC=0.97 

Eladawi et 
al. 2018 

[27] 

Healthy Eyes: 
23 

DR Eyes: 82 

Features: VD, BVC, 
and Width of the FAZ 
Classification: SVM 

with RBF kernel 

Accuracy = 94.3% 
Sensitivity = 

97.9% 
Specificity =87.0% 

AUC = 92.4%, 
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DSC = 95.8%. 
Alam et al. 
2019 [28] 

Healthy Eyes: 
40 

Mild NPDR 
Eyes: 20 Med. 
NPDR Eyes: 

20 
Severe NPDR 

Eyes: 20 

categorizes: BVC, 
BVT,FAZ-A , BVD, 

FAZ-CI, and VPI 
Classification: SVM 

Sensitivity = 
94.84% 

Aslam et 
al. 2020 

[29] 

Healthy Eyes: 
49 

DM without 
DR Eyes: 50 
DR Eyes:53 

Features: FAZ 
Circularity, Area of 

Ischemic Zones 
Around FAZ, 

Average Percentage 
of 

SkeletonizedCapillary 
Vessels, Mean 

Capillary Intensity, 
Mean Vessel 

Intensity 
Classification: NB, 
DT, LR, RF, and 

XGBoost 

AUC = 0.91 

Sandhu et 
al. 2020 

[30] 

DM w/o DR 
Eyes 36 

Mild NPDR 
Eyes: 53 
Moderate 

NPDR Eyes: 
22 

Features: FAZ-A, 
BVD, BVC, and 
bifurcation points 

Classification: 
Multistep RF 

Accuracy = 96.0% 
Sensitivity 
=100.0% 

Specificity 94.0%, 
AUC =  0.96 

Alam et al. 
2021 [31] 

Healthy Eyes: 
40 

Mild NPDR 
Eyes: 20 
Moderate 
NPDR: 20 

Severe 
NPDR: 20 
PDR Eyes: 

100 

Features: VCI, FD, 
and BVT 

Classification: 
Multivariate 
regression 

Accuracy = 
94.75% 

Zaylaa et 
al. 2021 

[32] 

91 
participants 

Features: CNN 
Classification: SVM 

Sensitivity = 
88.88% Specificity 

= 95.55% 
Abdelsalam 
and Zahran 
2021 [33] 

Healthy Eyes: 
90 

DR Eyes: 80 

Features: Multifractal 
Analysis 

Classification: SVM 

Accuracy=98.5% 
Sensitivity=100% 
Specificity=97.3% 

Liu et al. 
2021 [34] 

Healthy Eyes: 
132 

DR Eyes: 114 

Features Wavelet 
Classification: LR, 
LR-EN, SVM and 

XGBoost 

Accuracy = 82% 

Khaliliet al. 
2022 [35] 

NPDR Eyes:  
103 

PDR Eyes: 45 

Features: VD maps at 
SCP, DCP, and total 

retina (R) 
Classification: 
SVM with GA 

Accuracy = 90% 

Khalili 
Pour, E et 
al. 2023 

[36] 

45 PDR, 103 
NPDR 

Features 
Superficial Capillary 

Plexus (SCP) , 
Deep Capillary 
Plexus (DCP), 

Accuracy:  
- SCP: 85%

- DCP: 90% (Best 
performance)

- Total Retina (R): 

Total Retina (R) 
Support Vector 
Machine (SVM) 

classifier optimized 
by Genetic 

Evolutionary 
Algorithm 

85% 

Abtahi et 
al.2024 

[37] 

212 OCTA 
images from 

National 
Taiwan 

University 
Hospital 

SVM-based 
differential CLV 

analysis 

Binary 
Accuracy=89.26%, 

Multiclass 
Accuracy=86.23%. 

Meng, Z et 
al. 2024 

[38] 

13 eyes from 
82 patients 

with diabetic 
macular 

edema (DME) 

Logistic Regression, 
Support Vector 

Machine (SVM), 
Backpropagation 
Neural Network 

(BPNN) 

Logistic: 
Sensitivity = 

0.904, Specificity 
= 0.741, F1 Score 
= 0.887, AUC = 

0.910  
- SVM: 

Sensitivity = 
0.923, Specificity 
= 0.667, F1 Score 
= 0.881, AUC = 

0.897  
- BPNN: 

Sensitivity = 
0.962, Specificity 
= 0.926, F1 Score 
= 0.962, AUC = 

0.982 

2. Deep learning in optical coherence tomography

angiography for DR detection and classification

Ophthalmologists are interested in deep learning-based 
technologies because of their many OCTA applications, 
including OCTA reconstruction, OCTA denoising, and 
division of various regions of interest including vasculature, 
FAZ, and others. According to current studies and the use of 
quantitative OCTA characteristics for ML categorization, 
OCTA images include the essential data to recognize various 
retinopathies and stages of illness. Theoretically, CNN can 
automatically extract and classify features, eliminating the 
need for detailed feature engineering. Also, there could be 
factors that have not yet been looked at; by sending the image 
straight to CNN, CNN might be able to use a variety of data 
for early sickness detection. Millions of images would be 
required to optimize the millions of network parameters to 
teach a CNN system for an individual categorization activity. 
Because OCTA is a novel imaging modality with few datasets, 
investigating DL for OCTA classification is challenging. 
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Fig. 5.Deep learning-based DR detection and classification using OCTA images. 
 

An automatic AI-based diagnostic system that identified DR 
in a crucial analysis by Abramoff et al. [40] has now been 
approved by the Food and Drug Administration for use by 
healthcare professionals to identify mild DR and DMO. Islam 
[41] used the Kermani OCT dataset to evaluate the 
performance of DenseNet-201 for medical image 
classification. This model achieved an outstanding accuracy of 
98.6%, with sensitivity at 98.6% and specificity at 99.5%, 
clearly showing its potential for finding vital patterns in OCT 
images. Such results emphasize the working ability of 
DenseNet-201 for accurate and automated diagnosis in 
medical imaging. 

Heisler et al. [42] trained DenseNet, ResNet50, and VGG19 
architectures before utilizing them to fine-tune neural network 
components built using single data types. They co-registered 
OCT samples of the retinal layers and investigated the 
function of ensemble DL in categorizing DR from OCTA 
images. This study validates CNN's capacity to detect DR in 
OCTA properly, although it does have certain limitations, 
such as the need to train many networks when utilizing 
ensemble learning techniques, which significantly raises 
computing costs. Le et al. [43] employed transfer learning in 
their work to automate OCTA categorization, utilizing a DL 
CNN architecture and VGG16. Their teaching and cross-
validation involved databases of 131 images, comprising 75 
images of diabetic retinopathy (DR), 24 images of diabetic 
patients without DR (non-DR), and 32 images of good 
individuals. By retraining the final nine layers of the CNN's 
design, significant improvements were observed. The 
categorizer achieved enhanced cross-validation specificity, 
sensitivity, and accuracy, measuring 90.820%, 83.70%, and 
87.270%, respectively, in distinguishing mid of diabetic 
retinopathy, non-diabetic retinopathy, and healthy eyes. A 
doctor won't know how the CNN came to that prognosis, even 
though the CNN can make one. As a result, one of the 
shortcomings of this study is its interpretability. Abdelsalam 
[44] suggested that OCTA images be pre-processed in ways 
like resolving and contrast better and re-building and  
 

 
reconnecting the blood vessels. They took seven features from 
the OCTA images.  

This included measurements such as the mean of inter-
capillary areas for the top 10 and 20 selected regions, with or 
without the FAZ, the FAZ perimeter, the circularity index, and 
vascular density. These particular features were used to train 
an ANN to differentiate between diabetics who did not have 
DR and diabetics who had mild to moderate proliferative 
NPDR. Cano Jennifer et al. [45] used ordinary least squares 
modeling on OCTA images to differentiate advanced and 
early diabetic retinopathy from non-diabetics. 200 people were 
surveyed. The approach detected early and advanced diabetic 
retinopathy with 91% accuracy. The study also identified 
substantial changes in microvascular architecture between 
diabetic and non-diabetic participants, revealing the 
pathophysiology of diabetic retinopathy. Nevertheless, a small 
sample size and lack of external validation necessitated more 
research to confirm the findings. This work shows promise for 
OCTA-based diabetic retinopathy diagnosis and 
categorization. 

Kim et al. [46] developed a wide-field SS-OCTA and 
utilized it to create a semi-automated diagnostic system 
focusing on microvascular parameters for assessing the 
severity of DR from multiple perspectives. In their study, 235 
diabetic eyes were categorized into five groups: PDR, severe 
NPDR, moderate NPDR, mild NPDR, and diabetes without 
any non-diabetic retinopathy. The assessment encompassed 
VD, capillary NPA, and FAZ parameters. The NPA cutoff 
values to differentiate between severe NPDR and PDR, 
moderate NPDR and severe NPDR, mild NPDR, and 
moderate NPDR, and non-DR were AUC:90%, AUC: 94%, 
AUC:94%, and AUC: 91% respectively. The primary 
drawback of this investigation is that normal microvasculature 
may get obscured by projection artifacts brought on by 
bleeding or vitreous opacity, obscuring the NPA. Ryu et al. 
[47] evolved a completely automated categorization technique 
to diagnose DR by integrating OCTA images with a CNN 
model. They employed the ResNet101 model, which engaged 
in processing images through 101 layers of residual blocks. 
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Subsequently, it summarized the source and exit map data of 
the layer of convolution in every case using batch 
normalization, batch ReLU function activation, and maximum 
pooling. Post the residual blocks, the probability for every 
stage was computed using an FC layer employing a softmax 
function, while each feature map underwent averaging in the 
GAP layer. To visualize regions significantly associated with 
the task at hand, CAM was constructed from the GAP layer by 
aggregating the characteristics maps with the weights derived 
from the preceding layer. It is unimportant that the network's 
beginning parameters, except for the first and last layer 
parameters, were obtained from the ImageNet dataset's pre-
trained parameters. Finally, using our OCTA dataset, all 
parameters were retrained and optimized using the cross-
entropy loss with an AO and a learning rate of 0.0001. Their 
classifier was 91-98% accurate, 86-97% sensitive, 94-99% 
specific, and had an area under the curve of 0.919-0.976. Zang 
et al. proposed DcardNet[48], which is a CNN-based model 
capable of carrying out multi-level DR classification using en 
face OCT and OCTA data. Adaptive rate dropout and label 
normalization were applied to their model to minimize 
overfitting. The model's overall accuracy on referable DR, 
through 10-fold cross-validation, was 95.7%, while it achieved 
85.0% for NPDR and PDR, and 71.0% for finer DR stage 
classification. C. H. Hua et al. [49] proposed TFA-Net given 
an efficient classifier for medical images from KHUMC and 
Messidor datasets. The model obtained 90.2%-Quadratic 
Weighted Kappa, 94.8%-accuracy, and 99.4%-area under the 
receiver operating characteristic curve, proving its high 
performance and reliability in classifying medical images. 

Li et al. [50] suggested a deep learning architecture for 
OCTA image fusion that merges multilayer information. 
Initially, an OCTA picture was labeled with the borders of 
major retinal arteries and the FAZ using a U-Net-based 
segmentation model. The researchers subsequently created a 
separate ICB framework to gather and combine data from the 
raw OCTA samples and division findings at various levels of a 
blend.  Using their suggested classification model, they 
achieved a DR diagnostic Acc of 88.10% and an AUC of 
0.920.Hou et al. [51] give three components of their 
methodology: segmentation, image quality evaluation, and DR 
rating. They employed UNet and UNet++ networks with pre-
trained encoders for DR lesion segmentation. Using 
specialized methodologies, three unique lesions, IRMA, NPA, 
and NV, were employed to train the segmentation models. For 
IRMA segmentation, they developed a learning rate sequence 
and a color jittering augmentation. They did not, however, 
employ it to increase the division quality of NPAs and NV 
lesions. They also employed the example aggregate technique 
to forecast IRMA and NPA segmented masks. To solve the 
overtraining issue caused by limited sample numbers, they 
pre-trained their system using the large OCTA-25K-IQA-SEG 
dataset for assessing image quality. For the DRAC dataset, the 
model was then updated using a hybrid MixUp and CutMix 
approach. They integrated three models into one: Inception-
V3, SE-ResNeXt, and ViT. Finally, for DR grading, they used 
a ViT model, which takes an OCTA picture as input and 

generates the assessment. The area under the curve of 0.919-
0.976. 

Lyu et al. [52] proposed the AADG method, to 
automatically augment data and generalize it to continue 
learning separate domains and minimize domain-shift affect in 
a training-testing dat-set. For this purpose, they used both 
OCTA-500 and ROSE (OCTA).Yuan et al. [53] used deep 
learning-based high-resolution angiogram reconstruction with 
a generative adversarial network (SAR-GAN) to improve 
enface OCTA image quality, utilizing 50 OCTAs from healthy 
volunteers. Qiaoyu Li et al.'s [54] approach could classify 
various patterns in the OCT angiography images of the 
OCTA-500 dataset into background, vessels, and foveal a 
vascular zones. They observed an accuracy of 93.2% for the 
background, 93.8% for vessels, and 92.3% for the FAZ, thus 
demonstrating a reliable model for OCTA image analysis. 
According to Yuhan Zheng, Fuping Wu, and Bartlomiej W. 
Papie˙z [55], the ensemble method integrating ResNet, 
DenseNet, EfficientNet, and VGG could enhance the accuracy 
of OCTA data classification on the DRAC 2022 UW-OCTA 
dataset. The cross-validated QWK and AUC scores were 
reported at 0.9346 and 0.9766, respectively, reiterating the 
power of ensemble techniques on medical imaging tasks. 

The methodology developed by Fei Ma et al. [56] achieved 
classification of diabetic retinopathy (DR) using the Road 
dataset, with an accuracy of 87.5%, thus exemplifying 
progressive development in DR detection while 
acknowledging the constant challenge of improving accuracy 
in this domain. According to S. F. Rabbi et al. [57], use of a 
CBAM-augmented model could classify a custom OCT 
dataset with 10,000 images with very high accuracy. The 
model achieved values of 96% accuracy, F1 score, precision, 
and recall, indicating very strong performance in OCT image 
analysis. Matten et al. [58] proposed a multiple instance 
learning-based network for classification of diabetic 
retinopathy using OCTA images, named MIL-ResNet. The 
model was trained on a dataset collected with a diagnostic 
ultra-wide field swept-source OCT device without requiring 
pixel-level annotations. State of the art ResNet and VGG16 
were outdone by MIL-ResNet with impressive accuracy and 
robustness against adversarial attacks while being focused on 
clinically relevant biomarkers. Hatode and Edinburgh [59] 
introduced a method for diabetic retinopathy classification by 
generating synthetic OCTA images with Wasserstein 
Generative Adversarial Nets for data augmentation, 
overcoming limitations of small datasets. The synthetic 
images were classified into DR stages (PDR, severe NPDR, 
moderate NPDR, mild NPDR) using a fine-tuned ResNet50 
model, achieving 99.95% accuracy, surpassing previous 
studies 

Bidwai et al. [60] developed a deep learning approach for 
the detection of diabetic retinopathy among aged subjects 
using specially created OCTA datasets containing 262 high-
resolution images taken from Natasha Eye Center, Pune. Their 
protocol classified DR into different severity levels through 
training CNN models (Inception V3, ResNet-50, 
DenseNet121, EfficientNetV2B0), which were aimed at 
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assisting the doctors in providing timely diagnosis and 
interventions of unadulterated ocular diseases prevalent 
among the aged. 
 

TABLE II 
SUMMARYOF RESEARCH WORKS ON AUTOMATING DR DIAGNOSIS IN THE 

STATE-OF-THE-ART USING DEEP LEARNING METHODS 
Author and 

Year 

Databa

se 

Method Results (Best) 

Abràmoff et 

al. 2018 [40] 

900 
OCTA 
Images 

Classification: 
Multilayer 

CNN 

AUC=0.980 

Islam, 2019 

[41] 

Kerman
i OCT 
dataset 

DCNN: 
DenseNet 201 

Accuracy=98.6
%  

Sensitivity=0.98
6%  Specificity 

0.995% 
Heisler et al. 

2020 [42] 

No DR 
Eyes: 
224 
DR 

Eyes: 
156 

Features: Axis 
Ratio Index, 

Area, 
Perimeter, 
Diameter, 

Circularity, 
Maximum 

Eccentricity 
and Minimum 

of the FAZ 
Classification: 

Ensemble 
method 

including 
VGG19, 

ResNet50, and 
DenseNet 

Accuracy = 
90.71% 

Sensitivity=93.3
2% Specificity 

= 87.74% 

Le et al. 

2020 [43] 

Healthy 
Eyes: 

32 
DM 

w/o DR 
Eyes:24 

DR 
Eyes: 

75 eyes 

Classification: 
Transfer 

learning using 
CNN and 
VGG16 

Accuracy = 
87.27% 

Sensitivity = 
83.76%, 

Specificity = 
90.82% 

AUC=0.97 

Abdel salam 

2020 [44] 

Healthy 
Eyes: 

40 
DM 
w/o 

DR: 30 
Mild to 
moderat

e 
NPDR 
Eyes: 

30 

Categories: 
Mean of the 

inter-capillary, 
FAZ perimeter, 

circularity 
index, and 
vascular 
density 

Classification: 
ANN 

Accuracy = 
97% 

Cano 

Jennifer et 

al. 2020[45] 

 

33 no 
DR, 26 

mild 
NPDR, 

13 
PDR, 

22 
normal 
from 

private 
eye 

hospital 

Classification: 
Normal 
minimal 
squares 

demonstrating 
the technique 

PDR Accuracy 
= 94% 

Mild NPDR vs. 
healthy 

Accuracy = 
91% 

Kim et al. 

2021 [46] 

DR 
Eyes: 
235 

Features: 
FAZ,VD, and 

the NPA 

AUC = 0.922 

Ryu et al. 

2021 [47] 

Healthy 
Eyes: 

51 
DM 
w/o 

DR: 51 
Mild 

NPDR 
Eyes: 

53 
Modera

te 
NPDR: 

49 
Severe 
NPDR: 

48 

CNN classifier Accuracy = 
95.4% 

Zang et 

al.2021 [48] 

En face 
OCT 
and 

OCTA 

DcardNet 
(CNN-based) 
with adaptive 
dropout and 

label 
normalization 

95.7% 
(referable DR), 
85.0% (NPDR, 
PDR), 71.0% 
(finer stages). 

C. H. Hua et 

al. 2021[49] 

KHUM
C, 

Messid
or 

TFA-Net KHUMC -
Quadratic 
Weighted 

Kappa= 90.2% 
Accuracy=94.8

% 
Area Under 

ROC=99.4% 
Li et al. 2022 

[50] 

ROSE 
dataset 
Healthy 
Eyes: 
244 
DR 

Eyes: 
57 

Segmentation: 
U-Net 

Classification-
ResNet 50 

 

Segmentation 
Accuracy = 

93.1% 
Classification 

Accuracy=87.8
% 

Hou et al. 

2022 [51] 

DRAC 
dataset 

Features: 
IRMA, NPA, 

and NV 
Classification: 

UNet and 

AUC = 0.9083 
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UNet++ 
Lyu et al. 

2022[52] 

OCTA-
500, 

ROSE 
(OCTA

) 

AADG method 
for data 

augmentation 
and domain 

shift 
minimization 

Improved 
generalizability 
across domains. 

Yuan et al. 

2022[53] 

50 
OCTA 
images 

SAR-GAN for 
high-resolution 

angiogram 
reconstruction 

Enhanced 
OCTA image 

quality. 

Qiaoyu Li et 

al  2022 [54] 

 

OCTA-
500 

 

ResNet50 
 

Accuracy 
=93.2% for the 

background, 
93.8% for 

vessels, 92.3% 
for the FAZ 

YuhanZhen

g, et al. 

2023[55] 

DRAC 
2022 
UW-

OCTA 
Dataset 

Ensemble 
method 

+ResNet, 
DenseNet, 

EfficientNet, 
and VGG; 

QWK=0.9346, 
AUC= 0.9766 

Fei Ma et al 

2023 [56] 

ROAD 
dataset 

 

PACNet 
 

Accuracy = 
87.5% for DR 

S. F. Rabbi 

et al. 2023 

[57] 

Custom 
OCT 

Dataset
-10,000 
images 

Custom OCT 
Dataset 

+CBAM 

Accuracy =96% 
F1 Score=96% 
Precision=95% 

Recall=96% 

Matten et 

al.2023 [58] 

Ultra-
wide-
field 

OCTA 

MIL-ResNet 
for DR 

classification 

Superior 
accuracy and 

robustness 
compared to 
ResNet and 

GG16. 
Hatode and 

Edinburgh2

024 [59] 

Synthet
ic 

OCTA 
images 

Wasserstein 
GAN + fine-

tuned ResNet50 

99.95% 
accuracy for DR 

stage 
classification. 

Bidwai et 

al.2024 [60] 

Natasha 
Eye 

Center, 
Pune 
(262 

images) 

CNN models 
(Inception V3, 

ResNet-50, 
DenseNet121, 
EfficientNetV2

B0) 

DR severity 
classification in 
aged subjects. 

IV. DATASETS 

From the literature we have analyzed, we understand that 
there is a lack of a benchmark OCTA database for diabetic 
retinopathy diagnosis. Most of the researchers have gathered 
their databases from different ophthalmology clinics for 
diagnosis purposes. 

The four recently released OCTA datasets are ROSE [66], 
for which an application email with the necessary form must 
be sent to [61], OCTA-500 [65], which is freely accessible 
from [65], OCTA-SS [46], which is downloadable from 

[47],DRAC 22[55] and OCTA-500 [65]. The OCTA-500 
provides entire estimate images of various depths as well as 
3D OCTA data from 500 eyes. OCTA-SS provides the most 
comprehensive vessel commenting, which is utilized for 
numerical assessment and comparison. It gave 55 slices of the 
area that was fascinating derived from 3mm3mm FOV images 
of 11 people with and without a family history of dementia, 
rather than the entire field of view (FOV) images. ROSE is 
divided into two distinct datasets, ROSE-1 and ROSE-2. 
ROSE-1 [70] consists of 117 OCTA images from 39 people, 
39 with and 39 without Alzheimer's disease. The ROSE-2[70] 
subgroup comprises 112 OCTA samples from 112 eyes with 
various macula abnormalities. The DRAC dataset, introduced 
as part of the Diabetic Retinopathy Analysis Challenge 
(DRAC) at the 25th MICCAI Conference in 2022, is a 
comprehensive ultra-wide Optical Coherence Tomography 
Angiography (UW-OCTA) dataset comprising 1,103 high-
resolution images. It was designed to address three critical 
clinical tasks in diabetic retinopathy (DR) management: lesion 
segmentation, image quality assessment, and DR grading. By 
focusing on UW-OCTA imaging, the dataset provides detailed 
retinal vascular information over a wide field of view, 
enabling more precise analysis compared to traditional 
imaging methods. 

The primary focus among the four mentioned datasets is the 
OCTA-500, specifically tailored for diabetic retinopathy. 
Curated by Li et al. [39], the OCTA-500 database comprises 
500studies, encompassing two variations of FOV with both 
OCT and OCTA data. This dataset involves six projection 
types, four text labels, and two pixel-level labels. One subset, 
OCTA 6M, consists of 300 subjects with a 6mm x 6mm field 
of view, while the other subset, OCTA 3M, includes 200 
subjects with a 3mm x 3mm FOV. The data was gathered 
using a commercial 70 kHz spectral-domain OCT system, 
operating at a center wavelength of 840 nm. The OCTA 6M 
subset is derived from images captured at Jiangsu Province 
Hospital between March 2018 and September 2019, where 
only one image per eye study is included to ensure unique and 
non-repetitive data. 

V.DISCUSSION AND INFERENCES FROM THE REVIEW OF DR 

CLASSIFICATION MODELS AND DATASETS 

The field of automated diabetic retinopathy (DR) 
classification has significantly advanced due to the advent of 
machine learning (ML) and deep learning (DL). The present 
review endeavors to provide a brief account of developments 
right from the initial ML-based approaches towards 
sophisticated deep learning approaches enabling improved 
accuracy. Earlier, machines learned using handcrafted features 
like size of the foveal a vascular zone (FAZ), vascular density, 
bifurcation points, etc., for DR detection using various 
machine learning algorithms, primarily Support Vector 
Machines (SVM). These frameworks showed reasonable 
accuracy; however, they could not scale to diverse datasets as 
intended and thus had a problem with generalization. Figure 6 
show cases the accuracy levels of different ML models used in 
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OCTA-based DR studies, together with the pros and cons of 
early ML techniques. 

 

 
Fig. 6.Accuracy of Machine Learning Models in OCTA-Based DR Studies. 

 
With the rise of deep learning, several advancements have 

been made in DR classification. CNN-based architectures such 
as DenseNet, ResNet, and VGGNet were revolutionary by 
being able to learn features directly from raw data more 
competently. Fig. 8 shows a comparative study on the 
different accuracies attained by these deep learning models in 
OCTA-based DR studies, which is far superior in feature 
extraction than the classical ML models. The combination of 
transfer learning and ensemble method enhances model 
robustness, and multimodal techniques which combined 
OCTA with fundus imaging have added diagnostic value, as 
demonstrated in Fig. 7, illustrating the distributions of 
OCT/OCTA datasets utilized in DR studies. 

As the field continues to develop, the diversity and size of 
datasets become key aspects for the construction of powerful 
models. Fig. 7 emphasizes the need for varied OCT/OCTA 
datasets for training machine learning and deep learning 
models, with an increasing number of studies concerning this 
area. However, issues such as domain shifts, dataset 
augmentation, and clinical validation remain in the realm of 
concerns needing additional progress in order to ensure the 
models' generalization and usability in real clinical scenarios. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig.7.Distribution of OCT/OCTA Datasets Used in Diabetic Retinopathy 

Studies. 
 
Fig. 8 depicts the various DL models used in research 

studies dealing with Optical Coherence Tomography 
Angiography technology for detection and classification of 
Diabetic Retinopathy. The performances may have been 
indicated through different classification accuracies climbed 
within the domain of either convolutional neural networks or 
another of the deep learning architectures or models. The x-
axis might represent the studies or categories of models, while 
the y-axis might show the percentage accuracies used for 
detection of DR from OCTA images. This figure highlights 
the efficacies of DL models applied in this domain, showing 
high accuracies in DR diagnosis that are critical for early 
detection and treatment planning. Besides, it underlines the 
expanding role of deep learning in the development of medical 
image analysis in diabetic retinopathy detection. 
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Fig.8.Accuracy of Deep Learning Models in OCTA-Based DR Studies. 

 
Fig. 9 summarizes the AUC and dataset sizes for various 

machine learning models used in DR classification. It shows 
that the AUC score, which gives a measurement to the ability 
of the model to differentiate between different stages of DR, 
increases as the size of the dataset is larger. Traditional ML  
 

 
models such as SVM and Random Forest performed well and 
attained a level of plateau in performance as the dataset size 
becomes larger. The focus of this figure is on how the size of 
the dataset should be viewed as important in increasing 
diagnostic accuracy in ML models. 
 

 
Fig. 9.AUC and Datasets  of Machine learning Models in OCTA-Based DR Studies. 

 
On the other hand, Fig. 10 depicts the comparison between 

the AUC performance of deep learning models in OCTA-
based DR classification. The figure depicts that as the dataset 
size increases, deep learning models such as DenseNet, 
ResNet, and EfficientNet have higher AUC scores, meaning  
 

 
that they can more easily distinguish different stages of DR. 
This also points out deep learning models are better in 
handling larger datasets, from which they can extract more 
complex features and thus can achieve greater accuracy in DR 
detection. 
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Fig. 10.AUC and Datasets  of Deep Learning Models in OCTA-Based DR Studies. 

Fig. 11 shows the number of studies utilizing Machine 
Learning and Deep Learning techniques for classification of 
Diabetic Retinopathy using Optical Coherence Tomography 
Angiography over time. The figure indicates how research in 
this area has evolved, with increasing interest being shown  

towards ML and DL methods of analyzing OCTA images in 
detection and monitoring of DR. The trend may reflect a 
cultural change substituting an early generation of 
conventional machine learning methods for second-generation 
deep learning techniques into practice, pointing towards the 
advancements of AI and its growing role in medical imaging. 
Such advancement is suggestive of the ever-increasing role to 
be played by AI in increasing DR classification capacity and 
efficiency. 

Fig.11.Number of ML and DL Studies in OCTA for Diabetic Retinopathy Classification. 

In recent years, Diabetic Retinopathy detection has really 
changed. DR detection started out in 2018 with basic machine 
learning methods, with SVM, Random Forest, and Logistic 
Regression. These methods were very basic in nature; 
nevertheless, they opened up the realm of automated DR 
detection through retinal images. Beginning in 2019, deep 
learning, especially CNN, surged to the fore due to its superior 
performance in image-related works, giving a big boost in 
terms of high accuracy levels. By 2020, focus diverted 
towards more advanced DL architectures like DenseNet,  

VGGNet, and ResNet that could extract features and classify 
better. Researchers also utilized multimodal approaches by 
fusing OCTA and fundus images to increase the robustness of 
DR classification. 

These advances continued in the years through 2021, when 
ensemble methods and transfer training became the topic of 
discussion, leading to the development of models with greater 
accuracy and generalizability. 2022 saw the introduction of 
EfficientNet, among high-performance models based on 
transformer networks to introduce computational efficiency 

AJSE Volume 23, Issue 3, Page 277 - 297 Page 289



and accuracy. By 2023 hybrid models encompassing all-
inclusive methods became popular, enabling classification of 
DR into different stages. In 2024, generative adversarial 
networks played an indispensable role in generating synthetic 
retinal images for dataset augmentation to enhance generative 
performance of the models, especially OCTA images, thus 
boosting their application between domains. These 

developments demonstrate the continuous evolution of DR 
detection from basic ML models to sophisticated hybrid 
systems incorporating DL innovations. 

The following figure depicts these progresses, which are 
visions of essential inventions made year by year through ML 
and DL on Diabetic Retinopathy detection. 

 

 
Fig.12.Timeline of Research Progress in DR Detection. 

VI. RESEARCH GAPS 

Multiple research gaps must be filled to automate the 
system, even though a significant quantity of research yields 
experienced methods for the detection of DR. Here is how the 
research gap has been described. 

A. Applicability of Machine Learning 

Further research in healthcare environments is required to 
determine the applicability of ML , and automated screening 
procedures should be used to detect disease early on . 

B. OCTA selection for DR screening 

OCT and OCTA with DR have just recently been adopted 
for screening purposes. In terms of several performance 
measures, however, improving the automatic DR 
categorization yields better outcomes . 

C. Insights for storing clinical data 

Many ophthalmology practices provide smart healthcare 
solutions. However, using medical data that has been 
extensively stored electronically can enhance decision-making  

D. Research in artificial intelligence conducted in DR led to 

the development of an efficient system of automated grading  

Ophthalmology DR Research faces difficulties. So, the 
grading of DR occurs automatically as a result of executing an 
AI program using DR. However, the prediction is more 
accurate with more training images. Retinal structure and 
alterations can be covered by a single technique using the 
identification of OD, blood vessels, etc. The peripheral lesions 
are not primarily captured by the different imaging modalities. 
It is necessary to increase DR detection and categorization to 
improve the results. 

E. The algorithm's applicability should be narrowed down. 

Because of the insufficient dataset, the training dataset's 
effectiveness decreases. Additionally, generalizability should 
be performed on a diverse demographic sample. The method 
should be created in a way that prevents broad applicability. A 
revised definition of success and a deeper comprehension of 
medically applicable information in digital imaging will be 
included in the program's rapid development into a clinical 
environment during the following five years. 

F. Getting rid of the differences that exist between several 

fields of study such as computer science and medical science. 

AI research is a challenging area of study. It can develop a 
variety of scientific disciplines, including computer and 
medical science. The related research is narrowly targeted and 
relevant to a specific field. To lessen the variability between 
the areas, future studies will concentrate on combining the two 
fields. 

G. Affordability of disease diagnosis for cost-efficient 

treatment 

DR comes with a variety of difficulties. The advancement 
in DR screening is one such obstacle, though. After that, time-
saving remedies are required to automate the procedure by 
removing the diseases that manifest on the retinal surface. The 
issue of acquiring cost-effective, high-quality retinal images is 
expected to be solved by the growth of community-specific 
retina scanning methods, including cell phone technology to 
m-Health. 
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VII.PROPOSED METHODOLOGY 

The proposed methodology for classifying DR with OCTA 
images includes crucial steps to achieve more accurate 
diagnosis and develop improved clinical care. Systematic 
collection of OCTA images of the retina begins this process 
by providing the input images necessary to detect the 
abnormality in the retina. After capture, the images undergo 
pre-processing. This is a critical phase in which certain 
operations are aimed at improving the image quality in 
detecting noise and artifice and making it suitable for better 
analysis. The next step is data expansion, further expansions 
are applied to our preprocessed images to expand the data set. 
This includes transformation processes through rotating, 
mirroring and zooming to simulate different conditions under 
which images might later be captured. By expanding the 
training data, the model generalizes better and is more resilient 
to variations that the model may encounter in the real world. 
In addition to image data, data derived from other 
demographic variables considered in this model include, but 
are not limited to, age and gender. These provide additional 
training context as these parameters can influence 
susceptibility and onset of DR, which in turn allows the model 
to consider classification based on these factors. The next step 

is to split the dataset into three different subsets: training, 
validation and testing data. The training data gives the model 
general discriminative patterns and features for diabetic 
retinopathy. The validation data is then used to fine-tune the 
parameters so that overfitting of the training data does not 
occur and the model is preserved unlike the training data. 
Finally, test data uses a different evaluation platform to 
provide an objective assessment of model performance and 
measure its effectiveness for clinical purposes. Model training 
uses advanced techniques, particularly convolutional neural 
networks (CNNs). CNNs process the data across many levels, 
which can focus on increasingly abstract representations. 
Architectures like VGG or ResNet could be useful in this case 
as they are associated with superior performance in image 
recognition. This training phase allows the model to optimally 
learn the parameters to reduce the number of classification 
errors. This method concludes with the classification phase, 
where the trained model looks at the test data and classifies the 
images into two large groups: normal and diabetic retinopathy, 
divided into NPDR and PDR. This approach is very 
systematic and structured and aims to improve diagnostic 
accuracy and support clinical decision making, ultimately 
leading to better patient outcomes in diabetic eye diseases. 

 
Fig. 13. Proposed block diagram of DR detection and Classification Using Deep learning from OCTA images. 

VIII. PERFORMANCE MEASURES 

The confusion matrix is a way to show how well a 
classification model works. The confusion matrix's measures 
have been calculated according to the assumptions and the 
reality of the scenario. Based on these measurements, other 
specific metrics like Specificity, Precision, F1 score, 
Sensitivity, Accuracy, and Cohen's Kappa are defined. Also, 
the ROC[77,78] curve shows how well a classifier works by 
plotting the classifier's Sensitivity against its Specificity at 
different threshold settings based on the outcome of the 
classification (i.e. at which probability a given sample is 
considered as a positive or negative outcome). Last, AUC  

 
figures out the AU-ROC curve. This gives an overall measure 
of performance across all criteria for categorization. 
Precision=TP/(TP+FP)                                                        (6.1) 
Sensitivity/Recall=TP/(TP+FN)                                       (6.2) 
Specificity=TN/(TN+FP)                                                    (6.3) 
F1-score=2* (precision*recall)/(precision+recall)              (6.4) 
Accuracy=(TP+TN)/(TP+TN+FP+FN)                           (6.5) 

IX. CHALLENGES AND FUTURE SCOPE 

Despite significant developments over the past several 
years, reliable clinical diagnostics still face several challenges 
that must be overcome and continually enhanced to effectively 
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treat new illnesses and diseases. At the  moment, even doctors 
do not fully rely on AI-based methods because they are unsure 
of their capacity to foresee illnesses and their related 
symptoms. It takes a lot of work to train AI-based systems so 
that they can anticipate disease diagnosis techniques with 
greater accuracy. Therefore, in the future, research on AI 
should be undertaken while taking the problem noted before 
into account to create a partnership between AI and doctors 
that is mutually beneficial. Moreover, employing a 
decentralized federated learning model is crucial to create a 
unified training model for disease databases located remotely, 
enhancing early detection of illnesses. 

The majority of studies concentrate on fundus imaging 
methods, and scholars have devised several innovative 
methods that employ CNN and image processing techniques, 
DL, or hybrid[79] models that also deliver very accurate 
findings. All of this leads to the conclusion that OCTA images 
should be used through the identification of DR since they are 
crucial for understanding the severity patterns of the retina 
layer by layer as well as for neovascularization and changes in 
retinal blood vessel width that have not gotten much attention 
from researchers. 

The majority of studies have achieved the greatest success 
rates either when they have focused on a specific kind of 
irregularity or lesion in DR detection or when they have not 
taken into consideration all class grading of illness, which 
indirectly affects the usefulness of research. Strong color 
model algorithms need to be developed because the primary 
challenge in lesion identification is how the image is collected 
or under which settings such as values of the brightness or 
intensity of pixels can confuse the detection of normal retinal 
features. This means that the most important step in this 
process is determining the appropriate settings. 

Due to its established significance, DL algorithms[79,80] 
constitute the foundation of the majority of current image and 
video processing applications. However, several potential 
directions must be handled, making the robust DL network 
required. In reality, DL-based models are also used to improve 
DR detection systems automatically. There are many DL 
models in the literature that, to predict the DR from retinal 
images, mostly use CNN methods for creating deep multi-
layer architectures. Ophthalmologists are required for this 
image annotation, even though it is a time- and money-
consuming task. Therefore, in order to improve learning from 
an image collection, DL-based models must be created. 
Usually, when automatic clarification for DR images is 
implemented, there may be a problem with class imbalance. 
Therefore, it is crucial to examine the class imbalance issue in 
order to improve the DL-based models by taking a specific 
class learning bias into account. 

As there are many photographs acquired[81,82] under 
various situations, they must go through a lot of preprocessing 
and augmentation, which may cause some elements of the 
image to be lost. As a result, techniques should be utilized that 
not only maintain all the little critical information but can also 
successfully do pre-processing. Additionally, more than two 
photographs should be provided for each patient. This will 

increase the likelihood that the images will be accurately 
classified because more information can be acquired. 

X. CONCLUSION 

An OCTA-based automated approach for the early 
identification and categorization of diabetic retinopathy can 
significantly transform the realm of diagnosis by allowing 
high-fidelity and precise documentation of the disease; thus, it 
can elevate the standard of medical practice. Early detection of 
DR allows for timely intervention to-enable the prevention of 
visual-nerve damage and vision loss. While any imaging has 
diagnostic ability, OCTA captures reliable and high-resolution 
three-dimensional vascular detail superior to fundus imaging 
and invaluable for DR analysis. 

Our systematic review highlights the future promise of 
OCTA in predicting DR progression and analyzing its 
diagnostic feedback. Prospects of using it in detecting DR 
remain scant and limited by the absence of publicly available 
datasets and specialized methodologies for its analytics. Most 
incorporated techniques are based on fundus images, thus not 
being directly applicable to OCTA due to the intricate 3D 
nature of OCTA data; a much-needed factor for further study 
and development in this field. By marrying OCTA biomarkers 
with modern deep learning methods, there is an opportunity to 
integrate DR detection into routine clinical practice by fully 
automating the grading process. 

Recent developments in DL algorithms, notably 
Convolutional Neural Networks (CNNs) and transfer learning, 
posses high potential for the application of analyzing OCTA 
images through automated feature extraction from complex 
retinal patterns. Such methods could increase the accuracy, 
efficiency, and scalability of DR diagnosis, especially for 
patients who do not have access to skilled ophthalmologists. 
Conventional machine learning techniques, such as support 
vector machines and random forests, have demonstrated the 
potential, but would struggle with the complexity of three-
dimensional OCTA data. 

To fully leverage OCTA’s potential, future efforts must 
stand or fall on optimizing the biomarkers, enlarging high-
quality datasets, and developing strong algorithms that would 
generalize in diverse outpatient populations. Ideally merging 
OCTA biomarkers with novel deep-learning algorithms will 
set a new standard in DR diagnosis, classification, and its 
timely detection. Together we will be able to integrate against 
timely intervention and vision loss in diabetic patients. This 
will, in turn, allow us to seek greater availability and accuracy 
of DR screening through OCTA, bridging the gap in 
accessibility and patient outcomes. 
• OCT and OCTA represent groundbreaking advancements 

in retinal imaging, capable of extracting significantly 
more retinal information compared to traditional fundus 
images. 

• When compared to traditional fundus photography and 
OCT, DL in OCTA categorization hasn't been explored 
yet because there aren't enough public datasets. 
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• One of the major limitations of retinal fundus images is
their inability to capture depth, as they are restricted to
two-dimensional representations. OCT, in contrast,
provides depth measurement, offering a more
comprehensive analysis of retinal structure.

• This review highlights the potential of OCTA imaging as
a powerful tool for diabetic retinopathy detection, offering
detailed visualization of retinal microvasculature changes
that are critical for early and accurate diagnosis.

• DL models have demonstrated promising performance in
analyzing OCTA images, leveraging their ability to
process complex vascular patterns and subtle pathological
changes.

• Despite the advancements, the adoption of DL for OCTA-
based DR detection is limited by the scarcity of publicly
available, large-scale, annotated datasets, which hampers
the development and validation of robust models.

• Collaborative efforts are essential to create and share
diverse, high-quality datasets and to develop innovative
DL architectures tailored to the unique characteristics of
OCTA imaging.

• Continued research focusing on improving model
generalizability, addressing class imbalance, and
integrating multimodal data could pave the way for more
accurate, reliable, and clinically applicable solutions for
DR detection using OCTA.

• Combining OCTA biomarkers with advanced DL
techniques could establish a new standard for the early
identification, diagnosis, and classification of DR,
enabling timely interventions and reducing the risk of
vision loss in diabetic patients.

• Future studies should prioritize optimizing OCTA
biomarkers, enhancing dataset quality and size, and
developing robust algorithms that generalize across
diverse patient populations.

Abbrevia

tion 
Description 

PDR Proliferative diabetic retinopathy 
NPDR Non-Proliferative diabetic retinopathy 

FA Fluorescein Angiography 
OCTA Optical Coherence Tomography Angiography 

DR Diabetic Retinopathy 
CNN Convolutional neural network 
ICP Intermediate capillary Plexuses 

PRISMA Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses 

DL Deep Learning 
ML Machine Learning 

SVMs Support Vector Machines 
FAZ Foveal avascular zone 
BVB Blood vessel density 

VCI Vessal complexity index 
FAZA Foveal avascular zone area 

FD Foveal density 
CAD Computer-aided diagnostic 
ReLU Rectified linear unit 
GAP Global Average Pooling 
ViT Vision transformer 
AO Adam optimizer 
VD Vessel Density 

CNV Choroial Neovascularization 
FOV Field of view 
AUC Area Under the Curve 
DWT Discrete Wavelet Transform 

LR-EN Logistic Regression with Elastic Net 
Regularization 

SS-OCTA Swept-Source OCTA 
VD Vascular density 

NPA NON-perfusion area 
ICP Isolated Concatenated Block 

CAM Class Activation Maps 
VLD Vessel Length Density 
DNN Deep Neural networks 

XGBoost gradient boosting tree 
3D three- Dimensional 

ROV Receiver Operating Characteristic 
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