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Abstract—Audio signal decomposition breaks a mixture of
musical instrument audio signals into its fundamental musical
instrument components. Machine learning is one of the methods
widely used in audio signal decomposition. However, the limita-
tion of computer hardware and the complexity of the algorithm
may cause the computational speed of machine learning to
deteriorate. This paper aims to use the contemporary matrix
factorisation to extract the fundamental musical instrument audio
signal component from the mixture of musical instrument audio
signals. We choose nine contemporary matrix factorisation tech-
niques and compare their performance in separating the mixture
of musical instrument audio signals. We create five scenarios
with different melody complexity to test the matrix factorisation
techniques. Based on the Signal-to-Noise Ratio, Nonnegative
Matrix Factorisation with Kullback-Leibler Divergence (NMF-
KL) is the best separation performance when the monotonic noise
is not added to the mixture of musical instrument audio signals.
Initially, NMF-KL has good separation when monotonic noise
is added to the simple recurring mixture of musical instrument
audio signals, but as the melody complexity increases the NMF-
KL separation performance starts to deteriorate. Lastly, the
matrix factorisation techniques do not work well when the white
noise is added to the mixture of musical instrument audio signals.

Index Terms—Signal processing, Signal decomposition, Matrix
decomposition, Mixed source separation, Signal to noise ratio.

I. INTRODUCTION

IMAGINE a rhythmic complex melody played by an or-
chestra and the output sound is the combination of dif-

ferent musical instruments, each contributing to a part of
the melody. Signal decomposition is like breaking down the
complex melody into its fundamental components. In short,
signal decomposition [1] is a technique to analyse signals by
representing the complex signal as the sum of simpler signals.
The advantages of using signal decomposition include feature
extraction [2], data compression [3], etc. Hence, the research
has developed some techniques to perform signal decomposi-
tion such as the Fast Fourier Transform [4], Wavelet Transform
[5], Empirical Mode Decomposition [6], Nonnegative Matrix
Factorisation [7], etc.

This work was supported by Universiti Tunku Abdul Rahman (UTAR)
through the UTAR Research Fund (UTARRF) under project number
IPSR/RMC/UTARRF/2021-C1/N03.

W. K. A. Tang is with Universiti Tunku Abdul Rahman, Jalan Sungai Long,
43000, Kajang, Selangor, Malaysia, email: adriantwk97@1utar.my

W. S. Ng is with Universiti Tunku Abdul Rahman, Jalan Sungai Long,
43000, Kajang, Selangor, Malaysia, email: ngws@utar.edu.my

H. H. Liew is with Universiti Tunku Abdul Rahman, Jalan Sungai Long,
43000, Kajang, Selangor, Malaysia, email: liewhh@utar.edu.my

Signal decomposition has been applied in many different
fields. In the field of physics, it is used in machinery fault
diagnosis [8], signal denoising [9], turbulence analysis [10],
etc. In civil engineering, signal decomposition determines
the safety of bridges, buildings, and tunnels [11]. Other
than that, signal decomposition is also applied in biomedical
signal processing [12], [13] in separating the heart and lung
signals using a combination method consisting of Nonnegative
Matrix Factorisation and machine learning to perform the
duty of auscultation for cardiopulmonary, cardiovascular and
respiratory diseases. In addition, [14] used the Convolutive
Nonnegative Matrix Factorisation in extracting several sound
sources from monophonic input. On the other hand, [15]
showed that Independent Component Analysis can solve the
cocktail party problem which is a blind source separation
problem.

In the paper, we aim to build a framework using matrix
factorisation to perform separation on either simple or complex
mixtures of musical instrument audio signals in the single-
channel approach. In addition, we also test if our framework
has consistent performance when the noise is added to the
mixture of musical instrument audio signals. Conversely, the
musical instrument source separation problem is part of the
signal decomposition. Furthermore, different matrix factorisa-
tion techniques are employed to compare the separation quality
achieved by each technique. There are roughly two types of
matrix factorisation in numerical linear algebra. The first type
is the canonical matrix factorisation which can be seen in
the textbook, for example, LU factorisation [16], Singular
Value Decomposition [17], Cholesky factorisation [18] and
QR factorisation [19]. The second type is the contemporary
matrix factorisation which is a modern technique, for example,
Nonnegative Matrix Factorisation [7], Convolutive Nonneg-
ative Matrix Factorisation [20], Interpolative Decomposition
[21] and Independent Component Analysis [22].

Next, the data we use to test the framework in a mixture of
musical instrument audio signals with a minimum of two mu-
sical instruments and a maximum of five musical instruments.
Due to the copyright laws on music signals, our music signals
data is generated using open source Musical Instrument Digital
Interface (MIDI). We assume that the mixture of musical
instrument audio signals is obtained by adding J number of
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musical instruments as shown in (1).

y =
J∑

j=1

xj , (1)

where y is the mixture of musical instrument audio signals,
x is the J = 2, 3, 4, 5. Initially, the mixture of musical
instrument audio signals, y, is in time domain representation.
Thus, we need to apply the Short-time Fourier Transform
(STFT) in Librosa [23] library to transform y into a matrix
representation, Y . After that, we use matrix factorisation to
break the mixture of musical instrument audio signals. The
matrix factorisation techniques used in this paper are Nonneg-
ative Matrix Factorisation (NMF), Convolutive Nonnegative
Matrix Factorisation (CNMF), Interpolative Decomposition
(ID) and Independent Component Analysis (ICA). On the
other hand, Singular Value Decomposition (SVD) from the
canonical matrix factorisations is chosen as a benchmark
method. Subsequently, we use the Signal-to-Noise Ratio [24],
[25] to evaluate the separated musical instrument audio signal
quality by each of the matrix factorisation techniques.

II. METHODOLOGY

This section discusses the framework for performing the
musical instrument audio source separation using matrix fac-
torisation techniques in the single-channel approach. The
single-channel approach only needs one mixed audio signal
as an input for the framework. Fig. 1 shows an overview flow
on obtaining the separated musical instrument audio signals
from the mixture of musical instrument audio signals via the
signal-channel approach.

A. Step 1: Import the mixture of musical instrument audio

A mixture of musical instrument audio signals in WAV file
format with a sample rate of 22050 Hz is input using the
Librosa [23] library. 22050 Hz sample rate means there are
22050 samples per second. Python outputs a list of samples
as shown below.

y = [a1, a2, a3, . . . , at],

where y is the mixture of musical instrument audio signals
and t is the number of samples. As we input the audio signal,
the Librosa library automatically represents the audio signal
in the time domain. For the framework to work well, it is
recommended that the input audio melody is dynamic where
the audio signal amplitude changes over time.

B. Step 2: Transform the audio signal in the time domain to
matrix representation using a Short-time Fourier Transform

In this paper, we are using matrix factorisation techniques to
analyse the musical instrument audio signals. Thus, Short-time
Fourier Transform (STFT) is applied to the mixture of musical
instrument audio signals, y. In this paper, we use the Librosa
library for STFT calculation, requiring certain parameters to be
configured. We set the length of window signals after padding
with zeros (n fft) to 2048 which is the same as the physical
duration of 93 milliseconds at a sample rate of 22050 Hz

Fig. 1: Flowchart of performing musical instrument source
separation using matrix factorisation in single-channel ap-
proach.

which is suitable for music signal analysis. The window length
(win length) is set to 2048 and the hop length (hop length)
is set to 512 which is the recommended parameter for music
signal analysis as shown in [23]. The STFT is a method that
uses the Hanning window [26] to segment y into l ∈ R+

window segments, sl, then apply Fourier Transform on the
samples under each window segment separately. Then, each sl
is inserted as a column of the matrix, Y ∈ Rn×m, as shown
below.

Y =

 | | | |
s1 s2 · · · sl
| | | |

 ,

=


a11 + b11i a12 + b12i · · · a1m + b1mi
a21 + b21i a22 + b22i · · · a2m + b2mi

...
...

. . .
...

an1 + bn1i an2 + bn2i · · · anm + bnmi

 , (2)

where n denotes the number of columns of a matrix and m
denotes the number of rows of a matrix. As shown in (2), all
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the entries in Y are complex numbers. Hence, we need to take
the absolute value of the matrix Y , so that all the entries are
positive values and we obtain matrix, Y +. At the same time,
we also extract the phase, Φ, information from matrix Y using
(3) and in Python, we are using “np.angle”.

ϕcd = tan−1
bcd
acd

, (3)

where c = 1, 2, . . . , n and d = 1, 2, . . . ,m. Thus, we obtain
Φ as shown below.

Φ =


ϕ11 ϕ12 · · · ϕ1m

ϕ21 ϕ22 · · · ϕ2m

...
...

. . .
...

ϕn1 ϕn2 · · · ϕnm

 .

C. Step 3: Choose rank using explained variance ratio com-
puted using principal component analysis

Rank, k = min(n,m), is an important parameter when
performing dimensional reduction in the matrix factorisation
for matrix Y + ∈ Rn×m to obtain the approximated matrix,
Y +′ ∈ Rn×m. Choosing the wrong rank may lead to a loss
of information on matrix Y +′

when reconstructing using the
product of 2 or more factorise matrices. Therefore, Principal
Component Analysis (PCA) is applied to matrix Y + to de-
termine the rank by calculating the explained variance ratio
for each principal component. The first principal component
always has the highest explained variance ratio indicating it
holds more information. The explained variance ratio value
decreases from the first principal component to the last prin-
cipal component. In Python, the calculation for the explained
variance ratio using PCA in scikit-learn [27] and output p
explained variance ratio values where p = min(n,m) is the
number of principal components. Then, we use the inequality
in (4) to determine the rank of the matrix factorisation.

p∑
j=1

rj ≤ 0.98, (4)

where rj is the explained variance ratio of the jth principal
component. The summation stops when the sum of the ex-
plained variance ratio exceeds 0.98. For example, if the sum
of the explained variance ratio from j = 1 to j = 98 exceeds
0.98, then we take 97 as our rank. In (4), we choose 0.98
because we want to take 98% information from the matrix
Y +.

D. Step 4: Feature extraction by matrix factorisation

After the rank, k, is obtained, we perform matrix fac-
torisation on the matrix Y + to obtain a product of two or
more simpler matrices. In this paper, we apply Nonnegative
Matrix Factorisation (NMF) and Convolutive Nonnegative
Matrix Factorisation (CNMF). Besides that, CNMF is an
extended method from NMF which is effective in frequency-
time domain analysis [28]. We also chose the randomised
version of Interpolative Decomposition (RID) [21] because
of its fast computational speed when dealing with large
matrix dimensions. Besides that, we also choose Independent

Component Analysis (ICA) as it is a popular method in
blind source separation [22]. Furthermore, we choose Singular
Value Decomposition (SVD) as the benchmark method in this
research. Then, we look into each of the matrix factorisation
methods.

1) Nonnegative Matrix Factorisation (NMF): [7] defines
NMF as a technique to decompose a nonnegative matrix A
into W ∈ Rn×k and H ∈ Rk×m matrices, where k is the
rank. Then, the factorised structure is shown below.

A ≈ A
′
= WH,

where all the entries in W and H matrices are non-negative
and A

′
is an approximated matrix of A by using smaller

dimension of W and H matrices. Next, is to compute the
W and H matrices. First, we randomly initialise entries value
of W and H matrices. Then, we use the multiplicative update
rules derived by [29] in (5) and (6) to obtain a new entries
value for W and H matrices.

W ←−W ⊙

(
[WH + C]

⊙(β−2) ⊙ V
)
HT

[WH + C]
⊙(β−1)

HT
, (5)

H ←− H ⊙
WT

(
[WH + C]

⊙(β−2) ⊙ V
)

WT [WH + C]
⊙(β−1) , (6)

where ⊙ denotes the element-wise matrix multiplication, (·)⊙
denotes the element-wise power, (·)

(·) denotes the element-wise
division and C denotes a very small positive number to prevent
divisibility by zero. [30] state that there are three versions of
multiplicative update rules by substituting β = [0, 1, 2] into
(5) and (6). We have the Euclidean distance version when
β = 2, the Kullback-Leibler divergence version when β = 1
and the Itakura-Saito divergence when β = 0. Lastly, we stop
updating the W and H matrices when the tolerance imposed
by the user is fulfilled. In Python, the scikit-learn library NMF
model is used in this paper.

2) Convolutive Nonnegative Matrix Factorisation (CNMF):
CNMF is an extension of the NMF which can capture the
short-term temporal dependencies in the time series data [31].

First, we define the operator
t→
(·) and

←t

(·) below.

H =

[
1 2 3
4 5 6

]
H =

[
1 2 3
4 5 6

]
0→
H =

[
0 1 2
0 4 5

]
←0

H =

[
2 3 0
5 6 0

]
1→
H =

[
0 0 1
0 0 4

]
←1

H =

[
3 0 0
6 0 0

]
The factorisation structure of CNMF described by [14] is
shown below.

A ≈ Â =
T−1∑
t=0

Wt

t→
H , (7)

where A ∈ R+,n×m is the mixed audio signal in matrix

representation as input, Wt ∈ R+,n×k and
t→
H ∈ R+,k×m are

the basis and coefficient matrix. Furthermore, the
t→
H matrix

column shifts t steps to the right and k is the rank. In this
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paper, we choose T = 2 in (7). Then, matrix A is decompose

into summation of W0 ·
0→
H and W1 ·

1→
H as shown below.

Â = W0

0→
H +W1

1→
H . (8)

The steps are similar to NMF where we first randomly
initialise the W and H matrices then calculate new W and
H matrices using the multiplicative update rules in (9) and
(10).

Wt ←−Wt ⊙

(
Â⊙(β−2) ⊙A

) t→
H

T

Â⊙(β−1)
t→
H

T
(9)

H ←− H ⊙

WT
t

←t

A ⊙

[
←t

Â

]⊙(β−2)
WT

t

(
←t

Â

)⊙(β−1) , (10)

where ⊙ denotes the element-wise multiplication and (·)⊙
denotes the element-wise power, (·)

(·) deontes the element-wise
division and t = 0, 1, . . . , T −1. [14] recommended to take an
average t number of matrix H to form a new matrix H̄ that
is shared along all the t. In Python, the NMF Toolbox from
AudioLabs is used for the CNMF calculation.

3) Interpolative Decomposition (ID): ID is defined by [21]
given a matrix A ∈ Rn×m and the factorisation structure is
shown below.

A ≈ CZ

where matrix A ∈ Rn×m is the input matrix, matrix C ∈
Rn×k columns are chosen from the column of matrix A and
matrix Z ∈ Rk×m with some conditions where some size-k
subset of the column of Z form the k×k identity matrix and no
entry in Z has an absolute value greater than 2. [21] proposed
two different ID algorithms and in this paper Randomised
Interpolative Decomposition (Optim RID) is used. The steps
of computing Optim RID are as follows. First, a sampling
matrix, As, is created where its columns are randomly chosen
k + 2 columns from the input matrix A where k is the rank.
Then, we have the column-pivoted QR factorisation which
is AsPk = QkRk where Qk is the first k columns of an
orthogonal matrix, Rk is the k columns and rows of an upper
triangular matrix and Pk is first k columns of a permutation
matrix. Let C = AsPk. Next, we compute the matrix Z by
minimising the objective function ||A− CZ||F and obtain
RT

k RkZ = CTA. Lastly, we apply the diagonal pivoting
method to RT

k RkZ = CTA to compute the matrix Z.
4) Independent Component Analysis (ICA): ICA is defined

by [22] by giving an observed mixed signal represented by
matrix X . Then, we can express it as the unmixing equation.

S = XW,

where W is the unmixing matrix and S is the independent
matrix. Next, we can say that matrix X is decomposed into
independent matrix S and mixing matrix as shown in the
mixing equation below.

X = SA,

where A is the mixing matrix such that A = W−1. ICA
aims to compute the W matrix, therefore we use the Fast
ICA algorithm in the scikit-learn Python library to compute
it.

5) Singular Value Decomposition (SVD): [17] define SVD
by letting A ∈ Rn×m matrix, then

A = UΣV T ,

where U and V T matrices are orthogonal and Σ is the
square diagonal matrix. The steps to calculate the decomposed
matrices start by computing matrix AAT and matrix ATA.
Then, the columns of U are eigenvectors of matrix AAT , the
columns of V are eigenvectors of matrix ATA and matrix Σ
are the square roots of the eigenvalues of either AAT or ATA.
When dealing with larger matrix sizes, the SciPy library SVD
model is used to compute U , Σ and V T matrices.

E. Step 5: Extract the fundamental musical instrument audio
signal components

In section II-D, we observe that NMF, ID and ICA factorise
matrix Y + into two matrices which are W and H . On the
other hand, CNMF decomposes matrix Y + into two pairs of
W and H matrices as shown in (8) when T = 2. As for our
benchmark method, SVD factorises Y + into three matrices
which are U , Σ and V T matrices.

Then, we use (11) to compute the fundamental musical
instrument audio signal component matrix, Fj , for NMF, ID
and ICA where j = 1, 2, . . . , k and k is the rank found in
section II-C. On the other hand, CNMF has two pairs of WH ,
so we need to use (11) to compute the fundamental musical
instrument audio signal component matrix Fj for the first pair
of WH and do the same for the second pair of WH . As
for SVD, we use (12) to compute the fundamental musical
instrument audio signal component matrix, Fj .

Fj =


w1j

w2j

...
wnj

⊗ [hj1 hj2 · · · hjm

]
, (11)

Fj =


u1j

u2j

...
unj

⊗ σjj ⊗
[
vj1 vj2 · · · vjm

]
, (12)

where ⊗ denotes the outer product, Fj denotes the jth fun-
damental musical instrument audio signal component matrix,
j = 1, 2, . . . , k where k is the rank. After obtaining the fun-
damental musical instrument audio signal component matrix,
Fj , we need to reintroduce the phase information, Φ, into Fj

using (13).

Fjϕ = Fj ⊙


eiϕ11 eiϕ12 · eiϕ1m

eiϕ21 eiϕ22 · eiϕ2m

...
...

. . .
...

eiϕn1 eiϕn2 · · · eiϕnm

 (13)
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where ⊙ denotes the element-wise product. Lastly, we trans-
form the fundamental musical instrument audio signal compo-
nent matrix, Fjϕ, into a fundamental musical instrument audio
signal component in time-domain representation, fj , using
inverse Short-time Fourier Transform where j = 1, 2, . . . , k
and k is the rank.

F. Step 6: Identify the musical instrument from the fundamen-
tal musical instrument audio signal components and categorise
them into their respective musical instrument using cross-
correlation

From the previous step, we have extracted k fundamental
musical instrument audio signal components in the time-
domain, fj where j = 1, 2, . . . , k and k is the rank. To obtain
a similar separated musical instrument audio signal to the
original musical instrument audio signal, we need to categorise
k fundamental musical instrument audio signal components
into their respective musical instrument. Hence, we use the
cross-correlation method to measure the similarity between the
k fundamental musical instrument audio signal components
and the original musical instrument audio signals. Let o1 and
o2 be the original musical instrument audio signal. Then, we
use the correlate function below from the Numpy library [32]
to calculate the cross-correlation values.

corr1j = correlate (fj , o1) ,
corr2j = correlate (fj , o2) .

Then, we obtain two lists of cross-correlation values which
are corr1j = [r1, r2, . . . , rt] and corr2j = [s1, s2, . . . , st].
Next, we extract the maximum value from the two lists as
an indicator of which original signals that fj belong to as
j = 1, 2, . . . , k and k is the rank. If f1 has a higher corr11
than corr21, it means that f1 has high similarity with o1, else
it has high similarity with o2. Assume that we have the result
of fj where j = 1, 2, . . . , k is similar to o1 and o2 in Table I.

TABLE I: Cross-correlation value for each fj compare to o1
and o2.

fj o1 o2
f1 High cross-correlation Low cross-correlation
f2 Low cross-correlation High cross-correlation
f3 High cross-correlation Low cross-correlation
f4 Low cross-correlation High cross-correlation
...

...
...

fj−3 Low cross-correlation High cross-correlation
fj−2 High cross-correlation Low cross-correlation
fj−1 Low cross-correlation High cross-correlation
fj High cross-correlation Low cross-correlation

After categorising each of the fj into their respective musical
instrument, we can construct the separated o1 and o2 audio
signals. We add up all the fj which has a high cross-correlation
with the o1 audio as the separated o1 audio signal, then we do
the same for the separated o2 audio signal as shown below.

Separated o1 audio signal = f1 + f3 + · · ·+ fj−2 + fj

Separated o2 audio signal = f2 + f4 + · · ·+ fj−3 + fj−1

When dealing with three musical instruments in the mix-
ture audio signal, we just need to calculate additional
cross-correlation value between fj and o3, i.e., corr3j =
correlate (fj , o3).

G. Step 7: Performance evaluation of each matrix factorisa-
tion technique in musical instrument audio separation

From section II-F, we obtain the separated musical instru-
ment audio signal. To evaluate the separation quality of each
matrix factorisation technique, we use the Signal-to-Noise
Ratio [33] as an evaluation method. The formula of SNR is
shown below,

SNR = 10 log

∑
o2∑

(o− x)
2 ,

where o denotes the original audio signal and x denotes
the separated musical instrument audio signal. The higher
SNR value indicates that the audio quality of the separated
instrument audio signal is good.

III. RESULT AND DISCUSSION

[34] have discussed the computational time required to
decompose a matrix for each matrix factorisation technique in
this paper. We discovered that Convolutive Nonnegative Matrix
Factorisation (CNMF) have the longest computational time
followed by Nonnegative Matrix Factorisation (NMF). On the
other hand, Interpolative Decomposition (ID) and Independent
Component Analysis (ICA) have the lowest computational
time. As we increase the rank, the computational time of both
NMF and CNMF also increases but ID and ICA do not have
a significant increase in the computational time.

In this paper, we create five scenarios to test the framework
in section II. Then, Signal-to-Noise Ratio (SNR) is used to
determine the separation quality of each matrix factorisation
technique. Table II lists the matrix factorisation techniques and
their corresponding abbreviations used in this paper.

TABLE II: Matrix Factorisation Techniques.

Matrix Factorisation Techniques Abbreviations
Nonnegative Matrix Factorisation NMF-ED
with Euclidean Distance
Nonnegative Matrix Factorisation NMF-KL
with Kullback-Leibler Divergence
Nonnegative Matrix Factorisation NMF-IS
with Itakura-Saito Divergence
Convolutive Nonnegative Matrix Factorisation CNMF-ED
with Euclidean Distance
Convolutive Nonnegative Matrix Factorisation CNMF-KL
with Kullback-Leibler Divergence
Convolutive Nonnegative Matrix Factorisation CNMF-IS
with Itakura-Saito Divergence
Interpolative Decomposition ID
Independent Component Analysis ICA
Singular Value Decomposition SVD

A. Scenario 1: Separate the mixture of two and three musical
instrument audio signals with simple and recurring melody

In scenario 1, we mix two independent musical instruments
that is drum and guitar audio signals [35]. In this paper,
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(a) Separation quality for the mixture of two musical instrument
audio signals without noise.

(b) Separation quality for the mixture of two musical instrument
audio signals with noise.

(c) Separation quality for the mixture of three musical instru-
ment audio signals without noise.

(d) Separation quality for the mixture of three musical instru-
ment audio signals with noise.

Fig. 2: Performance evaluation for separation of mixtures of
musical instrument audio signals from each of the matrix
factorisation techniques for scenario 1.

independent musical instruments mean that drum and guitar
audio signals are not from the same musical melody. The
description of this mixed musical instrument audio signal is a
simple, short and recurring melody. The melody is recurring
for every four seconds. From section II-C, we compute our
rank as 15. First, we observe the separation quality for the
mixture of two musical instrument audio signals without noise
as shown in Fig. 2(a). We can observe that NMF-KL has the
highest Drum SNR value and CNMF-KL has the highest guitar
SNR value. However, we cannot conclude that CNMF-KL has
good separation quality because it has a lower drum SNR value
as compared to NMF-KL. Therefore, we can say that NMF-KL
has the best separation quality for both the separated drum and
guitar audio signals. On the other hand, our benchmark method
SVD has a negative guitar SNR value, this indicates that there
soft drum melody in the separated guitar audio signal that is
not able to be separated. Similarly, ID has a bad separation
quality on the guitar audio signal as the SNR value is close
to zero.

Most techniques perform well in separating the two musical
instruments mixed audio signals as shown in Fig, 2(a). Hence,
we add one more musical instrument audio signal into the
mixed audio signal and turn it into a mixture of three musical
instrument audio signals. The reason is to observe whether the
framework can still perform well in separating the mixture
of three musical instrument audio signals as shown in Fig.
2(c). We need to compute the rank again as we have inserted
additional musical instrument audio signals into the mixed
audio signal. Hence, We computed the rank and found it
to be 17. As we compare Fig, 2(c) with Fig. 2(a), we can
observe that the pattern for both drum and guitar SNR values
is similar. Hence, we can say that NMF-KL continues to be the
best-performing technique as the SNR value for drum, guitar
and bell is high. Even though from the y-axis in Fig. 2(c)
and Fig. 2(a), we can observe the SNR value drop for each
matrix factorisation technique. This means that the separation
quality drops when separating the mixture of three musical
instrument audio signals, however, it does not affect that the
separated drum, guitar and bell audio melodies are similar to
their original counterpart when we hear with human ears for
each of the melodies. Human ears are not sensitive enough
to identify the minor changes between the original musical
instrument audio signals and the separated musical instrument
audio signals. On the other hand, the separation performance
of ID and SVD is shown in Fig. 2(c) as the separated guitar
and bell audio signals have a negative SNR value.

After observing the performance of each matrix factorisa-
tion technique in the separation for the mixture of two and
three musical instrument audio signals. We know that the
mixed audio signal data is not always clean as they have noise
in it. Hence, we want to test if the framework can obtain
the separated musical instrument audio signal by creating a
monotonic noise signal using a sine wave with 1000 Hz. First,
we look into the separation for a mixture of two musical
instrument audio signals with noise in Fig. 2(b). Initially from
Fig. 2(a), all the techniques’ SNR values are positive except for
SVD. However, techniques like NMF-IS, CNMF-ED, CNMF-
KL, CNMF-IS, ID and SVD have a poor performance in
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obtaining the separated guitar audio signal as the SNR value is
negative. This means that we can still hear a soft noise sound in
the separated guitar audio signal. Furthermore, the separation
quality of separated drum audio signal drops significantly for
NMF-IS, CNMF-KL, CNMF-IS and SVD. As for ID, it has
the worst performance as both separated drum and guitar audio
signals’ SNR values are in the negative region. On the other
hand, NMF-KL is the best-performing technique as it has the
highest drum SNR and guitar SNR followed by NMF-ED.
Even though we can see a drop in SNR value for NMF-KL
when comparing Fig. 2(b) and Fig. 2(a), it does not affect
that the audio when listening is similar to the original musical
instrument audios.

Similarly, we add a monotonic noise to the mixture of
three musical instrument audio signals. From Fig. 2(d), NMF-
IS is the worst-performing technique as all the SNR values
for the separated drum, guitar and bell audio signals are in
the negative regions. Besides that, NMF-IS, CNMF-KL, ID
and SVD have a bad separation quality for both separated
guitar and bell audio signals. However, they have a decent
separation quality for the drum audio signal. On the other
hand, we can observe that NMF-KL is still the best-performing
technique followed by NMF-ED. In conclusion, NMF-KL is
the best-performing technique in the separation of the mixture
of two and three musical instrument audio signals with or
without noise as the mixture audio signal melody is simple
and recurring. Even though we can observe a drop in SNR
value for NMF-KL when a monotonic noise is added to the
mixed audio signal it does not affect that the separated musical
instrument audio is similar to the original audio signal when
we hear with our human ears.

B. Scenario 2: Separate the mixture of two and three musical
instrument audio signals with complex, recurring and non-
recurring melody

In scenario 2, we mix two dependent drum and guitar
musical instrument audio signals [36]. In this paper, dependent
musical instruments denote the drum and guitar audio signals
from the same musical melody. We describe this mixed
musical instrument audio signal as a complex combination
of recurring melody with non-recurring melody. After the
computation process in section II-C, we take 94 as our rank.
First, we observe the separation quality of each technique
on the mixture of two musical instrument audio signals as
shown in Fig. 3(a). Overall, we can observe that all the drum
and guitar SNR values are positive. From Fig. 3(a), we can
observe NMF-KL is still the best-performing technique as it
has the highest drum and guitar SNR values indicating that the
separated drum and guitar audio signal is similar to the original
counterpart. On the other hand, separated drum and guitar
audio signals produced by ID and SVD have low separation
quality. We are still able to hear the separated audio melody,
but the separated audio signal melody is not as smooth as the
original melody.

Similar to scenario 1, we add a musical instrument audio
signal which is trumpet audio into the mixed audio signal
and make it a mixture of three musical instrument audio

(a) Separation quality for the mixture of two musical instrument
audio signals without noise.

(b) Separation quality for the mixture of two musical instrument
audio signals with noise.

(c) Separation quality for the mixture of three musical instru-
ment audio signals without noise.

(d) Separation quality for the mixture of three musical instru-
ment audio signals with noise

Fig. 3: Performance evaluation for separation of mixtures of
musical instrument audio signals from each of the matrix
factorisation techniques for scenario 2.
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signals. The difference between scenario 1 and scenario 2 is
the loudness of the added musical instrument audio signal.
The newly added trumpet audio is louder as compared to the
drum and guitar audio. This shows that the trumpet is the
dominating melody in the mixture of three musical instrument
audio signals. Since an additional musical instrument is added,
we recalculate the rank to 94. From Fig. 3(c), we observe that
NMF-KL continue to be the best-performing technique as the
drum, guitar and trumpet SNR value is the highest followed
by NMF-ED. On the other hand, the separation quality for the
separated guitar audio signal produced by ID and SVD drops
from the positive region to the negative region as shown in Fig.
3(c). This shows that ID and SVD do not perform well in the
musical instrument audio signal source separation problem.

After that, we also added a monotonic noise created from
a sine wave with 1000 Hz to test the framework performance.
By comparing Fig. 3(b) with Fig. 3(a), we can see that
the separated guitar audio signal produced by NMF-IS and
CNMF-KL is not similar to its original counterpart as the
SNR value drop from the positive region to the negative
region. Moreover, the separation quality of CNMF-IS and ID
deteriorate for the separated drum and guitar audio signals
when the monotonic noise is in the mixture of three musical
instrument audio signals. Besides that, we have an interesting
observation as NMF-KL is not the best-performing technique
when it is applied to separate the mixture of two musical
instrument audio signals with monotonic noise. Therefore, we
continue to observe and see that NMF-ED has the highest
drum SNR value and mediocre guitar SNR value shown in
Fig. 3(b). Unfortunately, we cannot conclude that NMF-ED is
the best-performing technique because it cannot reproduce the
cymbal melody in the original drum audio signal. Hence, we
can conclude that CNMF-ED is the best-performing technique
as it has the second-highest drum SNR value and the highest
guitar SNR value. Besides that, it can reproduce the cymbal
melody in the separated drum audio signal. When comparing
the y-axis from Fig. 3(a) and Fig. 3(b) there is a significant
drop because the monotonic noise is not fully separated. Thus,
we can hear a soft monotonic noise from each of the separated
musical instrument audio signals

Similarly, we add the noise to the complex mixture of three
musical instrument audio signals and obtain the result in Fig.
3(d). We can observe from Fig. 3(d) that the ID has the lowest
separation quality with negative SNR values. This implies that
the sound of the separated audio signals is not similar to
their original counterpart. On the other hand, NMF-ED in Fig.
3(d) also face the same problem of reproducing the cymbal
sound, even though it has the highest SNR values for drum,
guitar and trumpet. Therefore, we can say that CNMF-ED is
considered a high-performing technique in separation for the
mixture of three musical instrument audio signals. Then, we
compare the y-axis of Fig. 3(c) and Fig. 3(d) and can see the
significant drop which indicates the monotonic noise is not
fully separated. Thus, we can still hear with our ears that there
is a monotonic noise from the separated musical instrument
audio signal.

In conclusion, NMF-KL is the best-performing method
when monotonic noise is not added to the complex mixture of

two and three musical instrument audio signals. When noise
is added, CNMF-ED produces a better separation quality for
the separated musical instrument audio signals. Occasionally,
we encounter problems like NMF-ED in scenario 2 as it is
not able to reproduce the cymbal audio in the separated drum
audio signal.

C. Scenario 3: Separate the mixture of two musical instrument
audio signals where the two musical instrument sound is
similar

(a) Separation quality for the mixture of two musical instrument
audio signals without noise.

(b) Separation quality for the mixture of two musical instrument
audio signals with noise.

Fig. 4: Performance evaluation for separation of mixtures of
musical instrument audio signals from each of the matrix
factorisation techniques for scenario 3.

In scenario 3, we want to test our framework performance
in separating the mixture of two musical instrument audio
signals which are under the same category. Hence, we mix two
dependent musical instruments which are the piano and guitar
[37]. This is because both piano and guitar are considered a
string instrument. We take the rank to be 23 which is calculated
from section II-C. From Fig. 4(a), we can observe that the
matrix factorisation techniques are not able to generate a good
separation quality for the separated piano audio signal as the
SNR values are negative. This is because the separated piano
audio signal still has the guitar audio that is not fully separated.
On the other hand, all the matrix factorisation techniques
produce a better separation quality for the separated guitar
audio signals. From Fig. 4(a), we can see that CNMF-ED and
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NMF-ED can generate better-separated guitar audio signals as
the SNR value is high.

In this scenario, we also add a monotonic noise to the
mixture of two musical instrument audio signals. There are
some interesting observations from Fig. 4(b) that both CNMF-
ED and ID are not able to generate the separated piano audio
signal. We tried to increase the rank from 23 to 80 but were
still not able to generate the separated piano audio signal. In
the case of the separated guitar audio signal, we can observe
that NMF-IS, CNMF-ED, CNMF-KL, CNMF-IS and ID have
bad separation quality as shown in Fig. 4(b). This implies the
monotonic noise does not fully separate from the separated
guitar audio signal and we can hear the monotonic noise
with our ears. On the other hand, the separated guitar audio
signal produced by NMF-ED, NMF-KL and ICA are mediocre
because we can still hear a soft monotonic noise and the
melody is not very similar to the original guitar audio signal.
This is due to the significant drop in the SNR value when
compared with Fig. 4(a) and Fig. 4(b). In conclusion, this
scenario shows that the framework does not perform well in
separating the piano and guitar audio signals with or without
the monotonic noise. This also shows that there are other
possible combinations of the mixture of musical instrument
audio signals that the matrix factorisation techniques are not
able to separate.

D. Scenario 4: Separate the mixture of two musical instrument
audio signals with simple recurring melody and white noise

Fig. 5: Performance evaluation for separation of mixtures of
musical instrument audio signals from each of the matrix
factorisation techniques for scenario 3.

Previously from section III-A to section III-C, we chose our
noise as a monotonic noise created using a sine wave with
1000 Hz. According to the result, we can see that the best-
performing technique NMF-KL can separate the monotonic
noise when the mixture of musical instrument audio signal
melody is simple and recurring. However, NMF-KL not able
to separate the monotonic noise when the mixture of musical
instrument audio signal melody is complex, recurring and non-
recurring. In this scenario, we change from monotonic noise to

white noise. We create the white noise using a random sample
from a normal (Gaussian) distribution [32]. Then, we add the
white noise into the mixture of two musical instrument audio
signals used in section III-A. When we listen to the mixed
audio, the sound of the white noise is louder than the drum
and guitar sound indicate the drum and guitar sound hardly can
be heard. The result in Fig. 5 shows a bad separation quality
for each of the matrix factorisation techniques to generate the
separated drum and guitar audio signals. This scenario also
shows that the matrix factorisation techniques do not perform
well if one of the musical audio signal sound intensities is
higher than other musical instrument audio signals in the
mixture of musical instrument audio signals.

E. Scenario 5: Separate the mixture of musical instrument
audio signals on different music genres

TABLE III: List of music genres.

Music Genre Combination of Music Instrument Rank Citation
Blues Drum + Guitar + Organ + Bass 92 [38]
Classical Alto Saxophone + Piano 21 [39]
Country Guitar + Piano + Drum + Bass 40 [40]

Disco Bass + Drum + Guitar + Piano 60 [41]+ Tensor Saxophone
Hip-Hop Bass + Drum + Flute 14 [42]
Jazz Bass + Drum + Piano 56 [43]
Metal Bass + Drum + Guitar 13 [44]

Pop Bass + Drum + Flute + Guitar 41 [45]+ Vibraphone

Reggae Bass + Drum + Electric Guitar 54 [46]+ Marimba

Rock Alto Saxophone + Bass + Drum 45 [47]+ Piano

TABLE IV: Signal-to-Noise Ratio for each music genre in
scenario 5.

Music Genre SNR value of each musical instrument
Blues Drum: 9.87; Guitar: 6.06; Organ: 2.66; Bass: 6.05
Classical Piano: 0.13; Alto Saxophone: 10.76
Country Drum: 1.31; Guitar: 8.65; Piano: 2.793327; Bass: 7.056608

Disco Drum: 6.33; Guitar: -1.04; Piano: 2.10; Bass: 3.00;
Tensor Saxophone: 4.00

Hip-Hop Drum: 9.91; Flute: 11.98; Bass: 11.24
Jazz Drum: 2.38; Piano: 3.78; Bass: 7.11
Metal Drum: 13.70; Guitar: -0.70; Bass: 1.09

Pop Drum: 1.56; Guitar: 5.66; Flute: 4.08; Bass: 3.95;
Vibraphone -1.16

Reggae Drum: 9.12; Electric Guitar: 8.50; Marimba: 6.02;
Bass: 4.33

Rock Drum: 11.58; Bass: 3.96; Alto Saxophone: 1.65;
Piano: 2.86

In the previous scenario, we obverse that NMF-KL is the
best-performing technique to separate the mixture of musical
instrument audio signals without any noise. In scenario 5, we
use NMF-KL in 10 distinct music genre melodies similar to
the real-world problem. Each of the music genres is a mixture
of musical instrument audio signals with a minimum of two
musical instruments and a maximum of five musical instru-
ments. The music genres, musical instrument combination and
rank are presented in Table III and the result is shown in
Table IV. Most of the musical instrument melodies in Table III
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are medium-pace melodies where some musical instruments’
audio sound intensity is higher compared to other musical
instruments in the mixed audio signal. From Table IV, we
observe that NMF-KL has better separation performance in
the Hip-Hop melody. This is because the sound intensity of
the drum, flute and bass audio signals are similar. Besides
that, NMF-KL also performed mediocrely in the music genres
of blues, country and jazz. The separated musical instrument
audio signals in these three music genres are not as clear as
the original musical instrument audio signals but the overall
melody pattern when listening is similar to their original coun-
terpart. Furthermore, we observe that some original musical
instrument audio signals are not played throughout the melody.
For example, the bass and guitar audio signals in metal are
only played in the first three minutes. When we listen to the
separated bass and guitar audio signals generated by NMF-
KL, we can hear some audio sound after three minutes of
the melody. This also shows that NMF-KL limitation in the
separation of musical instrument audio signals which is not
played throughout the melody.

F. Limitation of Interpolative Decomposition

In this paper, we are using the randomised version of the
Interpolative Decomposition proposed by [21]. The advantage
of ID is fast computation time and computational time does
not have a significant increase when we increase the size
of the matrix and rank. From section III-A and III-B, ID
does not have good separation performance to generate the
separated musical instrument audio signal. The reason for the
bad performance is the ID needs to create the signal sampling
matrix Y +

s where the columns of the matrix are randomly
chosen from the matrix Y +. We already know that some
musical instrument audio signals are not played throughout
the melody. This implies that the randomly chosen columns
may not contain information about that particular musical
instrument. Thus, ID is not able to generate that particular
musical instrument’s audio signal.

IV. CONCLUSION

This paper aims to investigate the performance of matrix
factorisation techniques when applied to solve musical in-
strument audio signal source separation problems. We have
created five different scenarios to test the matrix factorisation
techniques’ performance. We found out that Nonnegative
Matrix Factorisation with Kullback-Leibler divergence (NMF-
KL) is the best-performing technique. However, adding noise
into the complex mixture of musical instrument audio signals
affects the separation performance of NMF-KL. In addition,
the matrix factorisation techniques do not perform well when
white noise is added to the mixture of musical instrument
audio signals. In addition, NMF-KL fails to provide a good
separation quality for which the musical instrument is not
played throughout the melody. In future, we would like to
study on depth of choosing the correct T value in (7).
The separation performance of CNMF may increase if the
correct T is chosen. We also would like to compare the
separation performance of matrix factorisation techniques with

the existing techniques in the future. Lastly, the limitation of
the framework is the original musical instrument audio signal
sources must be known. However, this may not be applicable
in real-world problems as the original sources are unknown
most of the time. In future studies, we plan to include open
music data such as OpenMIC-2018 [48] to test performance
of the framework. We also plan to include other noise data
such as the real-world noisy environments, in our coming
research. Besides the matrix factorisation methods discussed
in this paper, we will incorporate deep learning methods such
as Convolutional Neural Network to observe their performance
in solving musical instrument source separation problem.
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