
Abstract— Numerical methods are essential in option pricing 

for handling complex derivatives, multi-asset scenarios, and 

American options, where analytical solutions are impractical. 

They offer flexibility, accuracy, and the ability to model real-

world market conditions. The present paper compares numerical 

pricing methods for European and American put option that 

have yet to be studied. This study implements five basic 

computational methods. Computer Algebra System (CAS) 

Python is utilized for the simulations. For both European and 

American put options, a tabular and graphical analysis of 

various strategies is offered. The findings show that the Crank-

Nicolson Finite Difference Method (CNFDM) yields better results 

than the other approaches. 

Index Terms— American option, Binomial method, Black-

Scholes-Merton method, European option, Finite Difference 

method, Monte Carlo method,  Trinomial method.  

I. INTRODUCTION

In modern finance, derivatives like options are traded on many 

exchanges worldwide. Since the pricing option is a 

challenging task, it attracts the attention of many researchers 

nowadays. In most circumstances, many prices must be 

calculated rapidly; therefore, precise option price computation 

is essential. At the beginning of the 1970s, Fischer Black, 

Myron Scholes, and Robert Merton established the Black-

Scholes-Merton (BSM) model [1]. One may immediately 
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compute the option value with this method, which is why it is 

widely used. Jodar et al. [2] explain this model utilizing 

Mellin transformation. Gonzalez et al. [3] studied the Black-

Scholes-Merton model, modified using a distinct dividend. 

Karagozodu et al. [4] studied the evolution of option valuation 

models from Black-Scholes-Merton to contemporary 

approaches, covering various assets and dynamic conditions. 

Morales [5] developed a modified BSM model inspired by 

conformable calculus, offering greater flexibility for pricing 

derivatives in well-developed markets. Parameswaran et al. [6] 

examine the effects of the BSM option valuation model on 

call-and-pull option Greeks and the likelihood that they will be 

executed at expiry. The Monte Carlo (MC) model is a 

numerical technique employed to value financial derivatives, 

particularly options, via approximating the underlying asset 

values' unpredictable trajectories. Phelim Boyle first 

introduced the Monte Carlo model in 1977. Mahboubeh and 

Mahnaz [7] studied an adaptive Monte Carlo algorithm for 

European and American options. This MC [8-12] method is 

beneficial for valuing complex derivatives with impractical 

analytical solutions. An approach to value option was 

developed in 1979 is known binomial model. Mou et al. [13] 

searched the American put option pricing mechanism under 

binomial consideration. Xiaoping and Jie [14] investigated the 

binomial tree and valuing of American-style options. Leduc 

and Merima [15] found that Joshi's first split tree performed 

far better for American options due to an optimized form of 

the tree. Muroi and Suda [16] discussed a new European 

option pricing method using a binomial tree model and 

discrete cosine transform. Phelim Boyle first used the 

trinomial model for option pricing in 1986, which was deemed 

greater in efficiency than the binomial model and would 

calculate similar results in fewer steps. After that, Han 

established an efficient method of quantitatively pricing 

options and detailed the findings for a continuous distribution 

of underlying stock price fluctuations known as the trinomial 

method. The trinomial option valuation model is for options 

that involve three alternative values for an underlying asset in 

a single period. Xiaoping et al. [17] investigated pricing 

options based on the trinomial Markov tree. European put 

option non-arbitrage valuing and hedging techniques using the 

trinomial model are suggested by Lin et al. [18]. Leduc [19] 

studied the trinomial tree using Boyle–Romberg method, 

which is really helpful for pricing double barrier options. 

Josheski et al. [20] compare binomial and trinomial models 
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with the BSM model for valuing option and their convergence. 

Hossein et al. [21] researched building trinomial models on 

Wiener space using the cubature method: applications to 

financial derivative pricing. The finite difference method [22] 

for option valuation discretizes partial differential equations 

and solves them numerically on a grid. Schwartz [23] initially 

applied the finite difference technique (FDM) to option 

pricing. Merton [24] was the first to suggest a closed-form 

solution. Fadugba and Nwozo [25] demonstrated using 

CNFDM for option valuation. They demonstrate CNFDM’s 

correctness, uniformity, and steadiness in the value of 

European options. Kumar et al. [26] used BANKNIFTY to 

compare algebraic BSM equations and computational 

solutions for driving option pricing. Courtadon [27] presented 

a framework that relied on traditional numerical methods and 

a finite difference approach to the option valuation challenge. 

Nwobi et al. [28] have inspected the effect of CNFDM on 

option values. They attempted to pinpoint the origins of 

underpricing in their article. Anwar and Abdallah [29] 

examined the consistency and option valuation technique 

using different FDM schemes. Sunday et al. [30] investigated 

the Finite Difference and Monte Carlo methods for estimating 

the European Option. When pricing the European option, they 

found that the Crank-Nicolson technique is stable and 

corresponds quickly to the Monte Carlo method. Mohammad 

et al. [31] proposed a qualitatively stable nonstandard Finite 

Difference Scheme to evaluate the nonlinear Black-Scholes 

Equation. Mohammad et al. [32] looked at a modified BSM 

with a different finite difference method.  

The literature survey shows many studies have been done on 

option pricing using different methods. Most of the works 

analyze European and American call options. There is some 

scope for working with put options with different methods. So, 

in this paper, five methods are discussed and compared for the 

American and the European put options with numerical and 

graphical descriptions.   

 

II. OPTION PRICING MODELS 

One needs to formulate an exact model to understand a 

problem's situation, which is tricky. That is why we use a 

simplified model that approximates the natural phenomenon 

ideally. This study describes various mathematical option 

pricing approaches, specifically: 

• Black-Scholes Merton Model (BSM). 

• Monte Carlo Method (MC). 

• Binomial Option Pricing Model (BOPM). 

• Trinomial Option Pricing Model (TOPM). 

• Finite Difference Method (FDM). 

A. Black-Scholes-Merton Model  

The trader's value and hedge derivatives have experienced 

significant changes after the creation of the BSM model. If the 

value of an asset is S and an option value is V, then  
2

2 2

2

1
0

2

V V V
S rS rV

t SS


  
+ + − =

 
                                      (1) 

 

Here, The strike price is E , r  signifies the risk-free rate of 

interest, and   stands for the stock's volatility.  

Equation (1) contains a substantial amount of solutions. To 

obtain particular derivatives equation (1) may be solved. Call 

options payoff is: 

( , ) max( ( ) ,0)C S T S T E= −                                                    (2) 

Evident that ; thus, the payment at 

maturity is zero. So, 

(0, ) 0C t = , for all 0 t T  .                                                (3) 

Conversely, in case the stock's price ever becomes 

exceedingly high, it will most likely stay extremely high and 

overwhelm the exercise price, causing it to collapse. So, 

, for large .                                                       (4) 

Equation (2) is the final condition and other constraints, (3) 

and (4), are known as boundary conditions. Now the put 

payoff is: 

( , ) max( ( ),0)P S T E S T= −                                                    (5) 

The payoff will be  at time ; when the asset’s value is 0. 

To obtain , and we make up for depreciation to obtain 
( )(0, ) r T tP t Ee− −= , for all 0 t T                                         (6) 

For extensive , The payout is almost certainly zero. so 

 , for large .                                                     (7) 

Black-Scholes option pricing Formula 

Imposing (2), (3), and (4) equation (1) and find a special 

solution for the value of the call option, which is, 
( )

1 2( , ) ( ) ( )r T tC S t SN d Ee N d− −= −   

Now from the general put-call parity relation, we get 
( )

2 1( , ) ( ) ( )r T tP S t Ee N d SN d− −= − −   

where, (.)N  is the Normal distribution with mean 0 and 

variance 1 and  

2

1

1
log ( )

2

S
r T t

E
d

T t





   
+ + −   

   
=

−
  

2

2 1

1
log ( )

2

S
r T t

E
d d T

T t






   
+ − −   

   
= = −

−
  

In this case,  C  represents the call option price, P  the put 

option price, S  the stock price at the moment, t  the option 

maturity period, E  the strike price, and r  the risk-free 

interest rate. 

B. Monte Carlo Method  

A useful numerical technique while using a closed-form 

approach is not accessible is the Monte Carlo technique. In a 

world without risk, the expected return is computed with a 

sampling technique. The main steps are [30]: 

• For the chosen period, simulate the movement of the 

underlying asset in a risk-neutral situation. 

• Discount the reward according to the route at the interest rate 

that is risk-free. 

• Carry out the method on a big number of example routes. 

• To find the value of the option, across the tested paths, 

average the cash flow discounts. 

The geometric Brownian motion is used in the Monte Carlo 

analysis of the stock price. 

( )dS Sdt Sdw t = +                                                             (8) 
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where  is the stock price,  is a Brownian motion. When 

S  represent the rise in the stock price within the next brief 

period of t , then 

                                                             (9) 

If   is volatility,  is the projected return, and z  has a 

normal distribution with mean zero and variance one then 

equation (9) became 

                        (10) 

Instead of using S  It is more precise to work with  and 

utilizing Ito's lemma, we alter the asset pricing process. 
2

(ln ) ( )
2

d S dt dw t


 
 

= − + 
 

  

From (10),      

  

Or 

                                      

(11) 

This tactic works well when the financial derivative's payout 

is contingent on the trajectory of the underlying asset over the 

option's duration [33]. At the maturity date, the price is: 
2

2
t z t

j

TS Se


 

  
−  +   

    =                                                           (12) 

where  and  is the total amount of attempts. 

The calculated European call and put option value is 

1

1
max[ ,0]

M
rT j

T t

j

C e S S
M

−

=

= −         

where  is the striking price, which may be found using the 

geometric or arithmetic means. 

C. Binomial Options Pricing Model (BOPM) 

In binomial process, two things may happen: either a move up 

uS  or a move down dS , where  and  [34]. The 

shift from S  to uS  is known as the up shift, and the shift from 

dS  is known as the down shift. The chance of an upward shift 

is , while the chances of a downward shift is . 

BOPM divides the whole-time frame into small intervals of 

size t . The elements P , u , and d must produce the right 

mean and variance values for the period t . When there is no 

dividend q  from the underlying asset, the expected return will 

be . The expected value after a specific time of size t  

must be  [35]. So, 

  

                                              (13) 

For the variable x  variance is . When the 

asset price movements as a proportion is R  at time , and 

there is a chance  that  is  and a probability  

is , the variance of  is . 

The variance of  is equal to the variance of , which is 

.  

                                        

(14) 

From equation (13) 

  

so, 

                         (15) 

Considering  [36], hence the relationship can be found 

by computing the above formula [37] 

  

Then divide the option's life into  subinterval of length . 

We will mention the  th node at time  as the  node 

(where   and ). Define  as the option 

value at the ( , )i j   node. The asset value at the ( , )i j node is 

0

i i jS u d − . The payoff from the financial commodity at 

maturity period T  a call option is max( ,0)TS K− . So 

  

Likewise, the payment of a put option at time T  is 

max( ,0)TK S−   so, 

 

Traveling from a node ( , )i j  to the  node at a 

time has a probability of  at time . Similarly, 

moving from a node  to the  node at a time 

 has a chance of  at time . Risk-neutral 

valuation when early exercise is not allowed is, 

, 1, 1 1,[ (1 ) ]r t

i j i j i jf e Pf P f−

+ + += + −  For  

and . 

However, when assessing premature execution, like the 

American option, we ought to use ,i jf , thus for a call option: 

, 0 1, 1 1,max{ , [ (1 ) ]}i i j r t

i j i j i jf S u d K e Pf P f− −

+ + += − + −   

And for put option: 

, 0 1, 1 1,max{ , [ (1 ) ]}i i j r t

i j i j i jf K S u d e Pf P f− −

+ + += − + −  

D. Trinomial Option Pricing Model (TOPM) 

The TOPM is a financial theory that considers three 

alternative values for an asset class in a one-time frame: 

uS , dS , and S . The probabilities of these movements are 

uP , mP , and dP . After the first interval, the projected asset 

values in the risk-neutral state is 0

r tS e  where
T

t
N


 

= 
 

; that 

is, 

0 0 0 0

r t

u m dS e P S u P S m P S d = + +        

r t

u m de P u P m P d = + +                                                     (16) 

Further, two requirements are derived from the dispersion and 

frequency condition; 

( )
2

2 2 2 2r t

u m dP u P m P d e t  + + − =                                    (17) 

1u m dP P P+ + =                                                                     (18) 

The following relation can be found after solving equations 

(16), (17), and (18); 

  

where, and . 
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Call options have a max( ,0)TS K−  payment, whereas put 

options have a max( ,0)TK S−  payoff. Using the backward 

induction process, where i  denotes the time and j  denotes 

the space, we get 

, 1, 1 1, 1, 1[ ]r t

i j u i j m i j d i jC e P C P C P C−

+ + + + += + +   

The reverse recursion for the American type looks like this 

[38]:  

For call: 

, , 1, 1 1, 1, 1max( , [ ])r t

i j i j u i j m i j d i jC S K e P C P C P C−

+ + + + += − + +   

For put: 

, , 1, 1 1, 1, 1max( , [ ])r t

i j i j u i j m i j d i jP K S e P C P C P C−

+ + + + += − + +  

E. Finite Difference Method (FDM) 

By estimating variables using finite differences, FDM is a 

computational approach for computing differential equations. 

FDM is technologically practical and essential for solving 

PDEs and pricing issues, providing a generic mathematical 

approach. The differential problem is transformed into a 

sequence of difference equations, which are then solved 

repeatedly. The most frequently used FDM for solving the 

Black-Scholes PDE is the: 

1. Explicit Method 

2. Implicit Method 

3. Crank Nicolson Method 

Now we discrete equation (1) concerning time  and the asset's 

fundamental value S . Convert the ( , )t S  plane into a suitably 

large number of points or mesh and accurately estimate the 

infinitesimal measures t  and S  with tiny, defined, limited 

steps. Create an array of 1N +  evenly divided grid 

points 0 ,......., Nt t  to divide the periodic derivative using 

1i i

T
t t t

N
+ − =  = . Following the same processes can calculate 

the asset's underlying price as follows:  max
1j j

S
S S S

M
+ − =  =  

This results in a rectangular area with sides on the ( , )t S  plane 

as max(0, )S and (0, )T . We may estimate the solution at 

discontinuous places using the grid coordinates (  and )i j . At 

time step  the stock price is , and the designate price of the 

derivative as 

   

here  and i j are discontinuous increases until maturity and 

share value, respectively. [30], [39] 

To solve Equation (1) at a given time i t , we must first find 

the option values at: 

▪ The upper border  

▪ The lower border  

▪ The starting values at option maturity.   

 

The PDE on sector S [0, ]   participates in the European and 

American put. This poses a challenge. This field needs to be 

represented by a limited number of elements. Limiting the 

area to , where M  is an appropriately large number, 

is a viable workaround [39].  

Consider,  

Time:       where   

Price:     where  

Let j=M  at upper border so that maxM S S = . 

 Now for European put: 

, 0,i Mf =                                                             

And for American put: 

     

Since 0j = at lower limit, so j S is zero and the payoff for 

the European put is: 

,                                                

And for the value of the American put option is: 

,                                                              

When i N= , the European put is: 

, max( ,0)N if K j S= −  , 0,1,.....,j M=                                           

And the American put is: 

, max( ,0)N if K j S= −  , 0,1,.....,j M=                                            

The aforementioned equations give the European and 

American put option values along the three grid conditions, 

where maxS S= , 0S =  and t T= .   

TABLE I 

BOUNDARY CONDITIONS FOR PUT OPTION 

Boundar

y 

European Put Option American Put Option 

t T=  
, max( ,0)N if K j S= − 

 

, max( ,0)N if K j S= − 

 

maxS S=  , 0i Mf =  , 0i Mf =  

0S =  ( )

,0

r N i t

if Ke− − =  ,0if K=  

 

Discretized by FDM scheme: 

Substitute the partial derivative that appears in the partial 

differential equation by estimations relying on Taylor series 

approximations of the function at the sites of interest in the 

finite difference approach [26]. Expanding , 

 ,  and  in Taylor series 

so the forward and backward difference formed respectively 

as [39], [40] 

                                                                       (19) 

                                                                       (20) 

The central difference is obtained through the first-order 

partial derivative. 

                                                                    (21) 

Second derivatives terms can be estimated using the 

symmetric central difference technique. This may be 

calculated as 

AJSE Volume 23, Issue 2, Page 158 - 167 Page 161



 

                                                          (22) 

                                                                       (23) 

                                                                       (24) 

Substituting Equations (21), (22), and (24) into the BSPDE (1) 

and noting that  and rearranging terms, we obtain the 

Implicit Scheme, 

 for     

and  

where 

  

  

  

Similarly, after substituting Equations (21), (22), and (24) into 

the BSPDE (1) we get the Explicit Scheme, 

 for     

and  

where 

  

  

  

The purpose now is to discretize the BSPDE (1). As a result, 

central estimation can be employed for  
f

t




 at the point 1

,
2

i
j

f − : 

   

By using a central approximation for 
f

t




 at the point 1

,
2

i
j

f −  : 

1
,

1, ,2 1

2

i
j

i j i j

f
f f

S S S

−

−


  

= + 
   

 

1, 1 1, 1 , 1 , 1 21
( )

2 2 2

i j i j i j i jf f f f
O S

S S

− + − − + −− − 
= + +  

  
 

 

Now using a standard approximation for 
2

2

f

S




 at the point 

1
,

2

i
j

f −  : 

2

2 21
,

1, ,2

2 2 2

1

2

i
j

i j i j

f
f f

S S S

−

−


  

= + 
    

 

1, 1 1, 1, 1 , 1 , , 1 2

2 2

2 21
( )

2

i j i j i j i j i j i jf f f f f f
O S

S S

− + − − − + −− + − + 
= + +  

  
 

Replacing these values into equation (1) yields 
1 1 1 1 1 1

1, 1 1, 1, 1 , 1 , , 1(1 ) (1 )j i j j i j j i j j i j j i j j i ja f b f c f a f b f c f− − − − + − +− + − − = + − −   

for   1,2,......, 1j M= −  and ,........,1i N=  

where 

 1 2 2( );
4

j

t
a j rj


= −  

1 2 2( );
4

j

t
b j r


= − +   

1 2 2( );
4

j

t
c j rj


= +   

 

III. NUMERICAL RESULTS AND DISCUSSIONS 

This article computes the American and a European put option 

value on a non-dividend paying stock. And the data sets 

considered here is taken from [40]: 

Data Set: 

The following data set is collected from [40]. 

0{ $69, $70, 0.05, 0.35, 0.5}S E r T= = = = =   

Where, 

0S =  Stock Price 

E =  Strike Price 

r =  Risk Free Interest Rate 
 =  Volatility 

T =  Maturity Time 

Table II shows a comparison between [40] and my work 

which shows a good agreement. 

 
TABLE II 

COMPARISON BETWEEN DEBNATH AND HOSSAIN [40] AND PRESENT WORK 

 European 

put option 

[40]  

European 

put option 

[Present 

work] 

% of error 

BSM 6.4014 6.401 0.0000625 

Implicit 

FDM 

6.3926 6.392 0.0000939 

Crank-

Nicolson 

FDM 

6.4012 6.420 0.0029283 

 

Table III gives the exact price of the taken data set evaluated 

for the European and American put options using different 

methods. 
 

TABLE III 
NUMERICAL VALUES FOR DATA SET IN DIFFERENT METHODS 

 BOP

M 

TOP

M 

MC BS

M 

FDM 

Explici

t 

Implici

t 

Crank 

Nicolso
n 

Europea

n Put 
Option 

6.401 6.402 6.10

5 

6.40

1 

6.402 6.392 6.420 

America

n Put 

Option 

6.576 6.577 -- -- 6.579 6.559 6.574 

 

Table IV shows the American put option price variation 

concerning the changes in interest rate ( )r , volatility ( ) the 

strike price ( )E , and maturity time ( )T  for Binomial Option 

Price Model (BOPM), Trinomial Option Price Model 

(TOPM), Explicit FDM, Implicit FDM and Crank Nicolson 

FDM. 
TABLE IV  

AMERICAN PUT OPTION 

Affecti

ng 
Factor 

FactorsVal

ue 

BOPM TOPM FDM 

Explici Implici Crank 
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t t Nicolso
n 

Interest 

rate 

( )r  

0.01 7.1817

5 

7.1828

7 

7.1873

9 

7.1703

1 

7.1817

5 

0.0325 6.8279
1 

6.8288
3 

6.8324 6.8127
4 

6.8266
3 

0.055 6.5068

5 

6.5076

1 

6.5099

7 

6.4891

4 

6.5044

6 

0.0775 6.2115 6.2121
3 

6.2133 6.1918
4 

6.2080
9 

0.1 5.9380

1 

5.9385

2 

5.9377

8 

5.9167

1 

5.9336 

Volatili
ty 

( )  

(%) 

29 5.4290
5 

5.4294
4 

5.4321
8 

5.4134
3 

5.4963
6 

31 5.8584

9 

5.8596

2 

5.8623

9 

5.8427

2 

5.8954

5 

34 6.2886
4 

6.2898
2 

6.2925
5 

6.2722 6.3867
3 

36 6.7193

8 

6.7199

5 

6.7225

9 

6.7018

3 

6.7971

4 

38 7.15 7.1499
3 

7.1524 7.1316
5 

7.2476
8 

Strike 

price 

( )E  

60 2.4014

6 

2.4012

8 

2.4012

6 

2.4085

2 

2.4166 

70 6.5058
1 

6.5065
9 

6.5002
6 

6.5586 6.5736
5 

80 13.070

99 

13.071

06 

13.071

27 

13.061

54 

13.079

12 

90 21.416
51 

21.416
42 

21.409
85 

21.412
41 

21.420
72 

100 31.032

5 

31.073

5 

31.020

1 

31.055

1 

31.310

1 

Maturit
y 

time 

( )T  

0.5 6.5758
1 

6.5765
9 

6.5792
6 

6.5586 6.5973
5 

0.88 8.2136

1 

8.2113

7 

8.2114

6 

8.1960

9 

8.7161

8 

1.25 9.4160
1 

9.4138
4 

9.4098
8 

9.4324
7 

9.5574
1 

1.625 10.373

94 

10.371

85 

10.363

78 

10.468

3 

10.494

22 

2.0 11.170
74 

11.168
72 

11.157
51 

11.385
69 

11.411
89 

 

Changing values for different affecting factors are shown in 

Table V for European put option. 
TABLE V 

EUROPEAN PUT OPTION 

Affe

cting 
Fact

or 

Fac

tor
s 

Val
ue 

BOP

M 

TOP

M 

MC BSM FDM 

Expli
cit 

Impli
cit 

Crank 
Nicolso

n 

Inter

est 

rate 

( )r  

0.0

1 

7.15

692 

7.15

819 

6.68

646 

7.157

62 

7.163

18 

7.148

36 

7.1613

1 

0.0

32

5 

6.72

425 

6.72

553 

6.72

016 

6.724

96 

6.731

05 

6.715

68 

6.7343

5 

0.0

55 

6.31

03 

6.31

157 

5.79

173 

6.311

02 

6.317

42 

6.301

82 

6.3278

2 

0.0

77

5 

5.91

476 

5.91

603 

5.96

404 

5.915

49 

5.922 5.906

47 

5.9376

7 

0.1 5.53
728 

5.53
856 

5.37
936 

5.538
04 

5.544
46 

5.529
28 

5.5673
6 

Vola

tility 

( )  

(%) 

0.2

9 

5.24

809 

5.24

908 

5.09

038 

5.248

43 

5.255

49 

5.240

62 

5.2529

9 

0.3
12

5 

5.67
987 

5.68
178 

5.29
039 

5.681
06 

5.687
97 

5.672
62 

5.7895
2 

0.3
35 

6.11
223 

6.11
404 

6.05
827 

6.113
38 

6.12 6.104
4 

6.1274
7 

0.3 6.54 6.54 6.18 6.545 6.551 6.536 6.5670

57
5 

484 584 295 36 55 06 1 

0.3

8 

6.97

698 

6.97

717 

7.12

777 

6.976

95 

6.982

63 

6.967

83 

7.4087

3 

Strik
e 

price 

( )E  

60 2.36
943 

2.37
061 

2.10
998 

2.370
12 

2.363
6 

2.365
76 

2.3887
4 

68 5.40

77 

5.40

912 

5.25

888 

5.408

53 

5.414

81 

5.399

31 

5.4933

1 

76 9.90
085 

9.90
118 

9.78
186 

9.900
77 

9.895
89 

9.894
18 

9.9243
6 

84 15.6

021 

15.6

012 

15.1

895 

15.60

11 

15.60

72 

15.60

33 

15.721

1 

92 22.1
632 

22.1
620 

22.0
462 

22.16
28 

22.16
75 

22.18
14 

22.197
4 

Mat

urity 

time 

( )T

 

0.5 6.40

069 

6.40

196 

6.39

702 

6.401

41 

6.407

75 

6.392

18 

6.4187

4 

0.8
75 

7.88
074 

7.87
832 

8.03
178 

7.879
3 

7.883
12 

7.884
21 

8.0088
4 

1.2

5 

8.91

159 

8.90

943 

9.21

49 

8.909

27 

8.910

56 

8.995 9.2611

6 

1.6
25 

9.68
785 

9.68
594 

9.75
416 

9.685
15 

9.684
18 

9.947
79 

10.340
41 

2.0 10.2

952 

10.2

935 

10.2

558 

10.29

23 

10.28

93 

10.82

76 

10.577

6 

Figure 1 shows the changes of American put option against 

the interest rate, volatility, strike price, and maturity time with 

the Explicit, Implicit, Crank Nicolson, Binomial tree, and 

Trinomial tree methods that are also quantitatively presented 

in Table IV. In Fig. 1(a), the price of a put option falls as 

interest rates rise. Rho determines how sensitive an option is 

with fluctuations in the risk-free interest rate. Put options have 

a negative Rho; thus, when interest rates rise, the price falls 

significantly. In Fig. 1(b), the put option prices go up as a 

result of growth in volatility. The rise in stock volatility 

enhances the value of both the call and put options. So, it is 

seen that only volatility influences put options similarly. In 

Fig. 1(c), the put price rises almost exponentially as the strike 

price rises. A rising strike price gives an increasing option 

price. It is clear from Fig. 1(d) that as the maturity time grows, 

so does the put option price. An option's temporal value 

decreases as it goes more out of the money; its underlying 

value is zero. An option's time value is at its highest point 

when it is in the money. 

 

  
       

       

 

 

 

 

 

 

(a) American put option value against interest rate 

AJSE Volume 23, Issue 2, Page 158 - 167 Page 163



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

A graphical representation of Table V is shown in Fig. 2. 

Because of the negative rho, the put option value in Fig. 2(a) 

drops as the interest rate rises.  Figure 2(b) demonstrates how 

volatility boosts the put option's price. It is clear from Fig. 2(c) 

that when the strike price rises, the put price does as well. The 

solutions provided by the seven approaches given are nearly 

identical. Figure 2(d) shows the put options towards the 

maturity time. When the time value goes up, the option price 

also rises. 

 

 

    

      
 

 

 

 

 

 

 

 

 

 

 

         

         

 

 

 

 

 

 

            

 

 

 

 

(b) American put option value against volatility 

(c) American put option against strike price 

Fig.1. American put option pricing concerning the 

changes in interest rate, volatility, strike price, and 

maturity time. 

 

(d) American put option against maturity 

(a) European put option value against interest rate 

(b) European put option value against volatility 

(c) European put option value against strike price 
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IV. CONCLUSION 

Five basic numerical techniques in financial mathematics are 

summarized in this study. Applied techniques include the 

Black-Scholes-Merton, Monte Carlo, Binomial, Trinomial, 

and Finite Difference approaches. The Monte Carlo and Black 

Scholes methods work well with European price options, 

whereas all other methods suit European and American 

options. The Monte Carlo approach is adaptable for dealing 

with high-dimensional financial problems. FDM is more 

accurate and is suitable for option pricing. Crank Nicolson 

FDM gives the best result among the Explicit, Implicit, and 

Crank Nicolson methods. 
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