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Abstract—Fuzzy logic systems (FLS) are widely used in various
engineering, medical, and scientific applications for modelling
complex and uncertain systems. However, traditional FLS has
limitations in handling complex and hierarchical structures due
to their lack of scalability and interpretability. This paper
proposes an approach to hierarchical fuzzy systems (HFS) that
enhance the traditional FLS by providing a hierarchical structure
with multiple levels of fuzzy rules. The main contribution of this
paper is the proposal of HFS, which improves interpretability,
scalability, and accuracy compared to traditional FLS, partic-
ularly for real-world applications. However, the question arises,
“How can the FLS be converted into the HFS?” In this paper, the
approach to HFS architecture will comprise two levels of FLS,
where the the first level determines the overall behaviour of the
system, and the second level refines the output by considering
the local behaviour. The proposed approach has been validated
through experimental results in a case study, such as the Iris
flower classification. The results demonstrate that HFS provides
more efficient and reliable solutions and can be applied to various
complex and hierarchical systems in different domains, such as
manufacturing, robotics, and decision-making.

Index Terms—Fuzzy Logic System, Hierarchical Fuzzy Sys-
tems, Interpretability, Complexity

I. INTRODUCTION

THE Fuzzy Logic Systems (FLS) have become popular in
various fields, including engineering, medicine, and sci-

ence, because of their ability to model complex and uncertain
systems [1].

However, traditional FLS has limitations when dealing
with complex and hierarchical structures, primarily due to
scalability and interpretability issues [2]. To overcome these
limitations, this paper proposes a novel approach called Hierar-
chical Fuzzy Systems (HFS), which enhances traditional FLS
by introducing a hierarchical structure with multiple levels of
fuzzy rules [3].

The main contribution of this paper is to compare HFS
and traditional FLS comprehensively. By comparing these two
approaches, the paper aims to demonstrate the advantages of
HFS over FLS in terms of interpretability, scalability, and
accuracy, particularly in real-world applications.
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Through a thorough comparison between HFS and FLS,
this paper aims to contribute to understanding the benefits and
limitations of each approach. The findings of this comparison
will provide valuable insights for researchers and practitioners
when selecting the most suitable methodology for complex and
hierarchical systems in different domains, such as manufactur-
ing, robotics, and decision-making.

II. LITERATURE

This section is intended to offer essential background infor-
mation about the study subjects. It highlights knowledge gaps
between FLS and HFS, particularly regarding their function-
alities, benefits and existing challenges.

A. Fuzzy Logic System
FLS was initially introduced by Lotfi Zadeh in 1965 [4],

a Professor at the University of California, Berkeley. He
introduced the notion of fuzzy sets to handle such uncertain
environments and vagueness in information, which now forms
the basis for modern control theory. For over fifty years, FLSs
provided the basis for a successful method of modelling un-
certainty, vagueness and imprecision, particularly in consumer
products and control applications [5], [6].

1) How it works – FLS: The principle of fuzzy logic is to
formalize and mechanize two essential human skills. Firstly, it
enables reasoning and decision-making in environments with
ambiguity, imprecision, incomplete information, contradictory
information, and partial truth or possibility. Secondly, it allows
for performing various tasks without precise measurements or
computations [6]. Fuzzy logic can be described as a logic of
approximation characterized by fuzzy truth values expressed
in linguistic terms, imprecise truth tables, and inference rules
with approximate validity [7].

FLSs are commonly used to represent nonlinear, unpre-
dictable, and complex systems. Partitioning the system vari-
able space into fuzzy regions using fuzzy sets is a key
feature of FLSs [8]. Each region is associated with a rule
that describes the system’s properties. FLSs consist of a rule
base with rules connected to specific areas where the avail-
able information is easily understandable. This property has
applications in various fields, including medicine, engineering,
decision support, and pattern recognition [9]–[12]. FLSs use
fuzzy rules that employ linguistic variables and terms close to
natural human language. The number of fuzzy rules required
grows exponentially with the size of the input space [8]. To
form a complete fuzzy system with n input variables and m
membership functions for each input variable, mn rules are
needed.
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2) Advantages of Fuzzy Logic System: Additionally, FLSs
have gained acceptance as a methodology for designing robust
controllers that can effectively handle uncertainty and impre-
cision [13], [14]. They have been applied to various problems
and have demonstrated their ability to generate more resilient
and cost-effective solutions in the face of uncertainties. The
interpretability of FLSs is often highlighted as one of their
strengths, as they enable the modelling and processing of lin-
guistic variables and rules that are easily understandable [15].
This interpretability is particularly valuable in applications
such as knowledge extraction and decision support [16]–[18].

The concept of fuzzy logic is analogous to human experi-
ence and inference. Unlike traditional point-to-point control,
fuzzy logic control operates on a range-to-point or range-
to-range basis. A fuzzy controller produces its output by
fuzzifying inputs and outputs using appropriate membership
functions. A crisp input is transformed into the various mem-
bers of the linked membership functions based on its value.
From this perspective, the output of a fuzzy logic controller
is determined by its memberships in different membership
functions, which can be seen as a set of inputs [19]. Since
the 1980s, fuzzy logic implementations have been reported in
various industries, such as manufacturing, automatic control,
vehicle production, banking, hospitals, libraries, and academic
education. Fuzzy logic approaches are widely used in today’s
society.

3) Current issues: FLSs have been successfully applied
in various domains, particularly in uncertain situations and
imprecise information. However, a key challenge with FLSs is
that as the number of variables increases, the number of rules
grows exponentially [20], [21]. Essentially, the complexity of
an FLS escalates exponentially with the number of variables
involved. This phenomenon, known as the ’curse of dimension-
ality’, was identified by Bellman [22] and further examined by
Zeng and Keane, [23] from multiple perspectives.

(a) Rule dimensionality: The number of rules in the fuzzy
rule base increases exponentially with the number of
input variables.

(b) Parameter dimensionality: The total number of parame-
ters in the mathematical formulas of fuzzy systems in-
creases exponentially with the number of input variables.

(c) Data or information dimensionality: The number of data
or knowledge sets required to identify fuzzy systems in-
creases exponentially with the number of input variables.

To address this problem, several methods have been pro-
posed for optimizing the size of the rule base, such as rule
selection [24], [25], feature selection [26], rule interpolation
[27], singular-value decomposition-QR [28], evolutionary al-
gorithms [13], fuzzy similarity measures [29] and rule learning
[30].

Most of these techniques involve modifying the original
input variables of fuzzy systems that can cause the loss of
the original meaning of variables [17] and also reduce the
model interpretability. Nevertheless, one effective way to deal
with this problem is through the use of a special type of
FLS, namely HFSs, that will reduce the number of rules while
retaining the original meaning of variables [2], [21], [31].

B. Hierarchical Fuzzy Systems

HFSs were initially proposed by Raju et al. [2], [31] as a
solution to the rule explosion problem. They offer a distinct
approach by organizing input variables into a set of low-
dimensional FLSs, known as fuzzy logic subsystems [32].
This approach effectively addresses the complexity issue and
enhances interpretability. Unlike traditional fuzzy systems,
HFSs exhibit a linear rule increase instead of exponential
growth [3]. In HFSs, assuming two input variables per low-
dimensional fuzzy system and m fuzzy sets per variable, each
low-dimensional fuzzy system comprises m2 rules. Conse-
quently, the total number of rules is represented by a linear
function, (n − 1)m2, where n denotes the number of input
variables [21]. Therefore, the number of rules in HFSs is
always equal to or less than that of a comparable FLS. HFSs
can be visualized as a cascade structure, where the output of
each layer, referred to as the intermediate output, serves as an
input for the subsequent layer [33], [34].

1) How it works – HFS: When managing a large-scale sys-
tem, utilizing a hierarchical structure proves highly effective.
This hierarchical arrangement of rules in fuzzy control allows
for applying fuzzy controllers in relatively large systems [2].
The number of rules in the hierarchical structure can be
reduced by dividing any level with three or more system
variables into two levels, one containing only two system
variables. This process can be repeated for all levels, resulting
in the minimum number of rules when each level consists of
only two system variables [35].

The advantage of HFS is its ability to reduce the number of
fuzzy rules while maintaining a high level of system accuracy.
This reduces computational complexity for fuzzy systems,
particularly those with large-dimensional input variables. Both
type-1 and type-2 fuzzy systems encounter the same chal-
lenges under the hierarchical structure. One challenge is se-
lecting the input variables of systems during system modelling.
The other challenge arises when determining which input
variables enter the systems after establishing the hierarchical
structure [36].

2) Advantages of Hierarchical Fuzzy System: In most
cases, the underlying idea behind the construction of HFSs
is to cope with the complexity of problems. Here are some
other advantages of the implementation of the HFS.

(a) Rule reduction: A significant issue arises when the num-
ber of system inputs is large, leading to an exponential
growth in the number of rules [37], [38]. This results in
increased computational complexity in building a fuzzy
system, known as the curse of dimensionality. However,
this problem can be overcome by restructuring the fuzzy
subsystems hierarchically, which leads to a linear in-
crease in the number of rules and reduces computational
complexity [39]. Brown and Harris also suggest using a
hierarchical structure of fuzzy rule bases to achieve linear
growth in the number of rules [40].
In summary, one of the main objectives of using HFSs
is to minimize computational complexity, reduce the size
of the rule base, and consequently decrease the need for
large system memory and processing time [41].
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(b) Improving the Interpretability: Recently, significant re-
search has been done on the interpretability of HFSs.
The primary goal of HFSs is to minimize computational
complexity and the size of the rule base. By reducing
model complexity, the interpretability of the system can
be improved, as systems with fewer rules are easier to
interpret [42]. Salgado and Cunha [43] also suggested
that the small number of rules in each fuzzy sub-system
can help avoid this problem without compromising global
model accuracy. In some cases, input variables’ linguistic
terms and membership functions are assumed to be
identical in each fuzzy sub-system. This assumption aims
to maintain consistency in interpretation and simplify
the model [23]. According to Benı́tez and Casillas, [44],
HFSs have good interpretability due to several reasons:
(i) the hierarchical structure results in a lower number
of variables in each subsystem, (ii) the algorithm does
not generate artificial linking variables, ensuring that all
variables are interpretable because they belong to the
system, and (iii) the rules are simpler because the number
of variables per subsystem is lower. At the same time,
accuracy is either maintained or improved. However, it
is important to note that this statement is context-specific
and cannot be generalized.

(c) The trade-off between Accuracy and Interpretability: Ac-
cording to a survey conducted by Shukla and Tripathi
[45], the HFSs are considered one of the approaches that
achieve a balance in the design of complex fuzzy systems,
specifically in terms of rules, rule bases, membership
functions, and fuzzy partitions. Delgado et al. [46] also
demonstrated that HFSs can be adjusted to improve
the model’s performance and accuracy and ensure its
interpretability. Using a hierarchical knowledge base, lin-
guistic modelling aims to decompose a non-linear system
that strikes a desired balance between interpretability and
accuracy [26].
However, the decision on the model’s level of inter-
pretability and accuracy usually depends on the user’s
specific needs for a particular problem. It will influence
the selection of the FLSs type for use [47].

(d) Universal approximation: Zeng and Keane [23] con-
ducted a study on the approximation capabilities of HFSs.
The analysis revealed that hierarchical fuzzy approxi-
mation, compared to standard fuzzy approximation, can
greatly reduce the number of rules and parameters needed
to achieve the desired level of accuracy. Wang [38]
provided proof that a specific class of HFSs can serve as
a universal approximator for any real continuous function
on a compact set, and this finding was further supported
by Joo and Lee [48].

III. COMPARISON BETWEEN FUZZY LOGIC SYSTEMS AND
HIERARCHICAL FUZZY SYSTEMS

This section attempts to elucidate this paper’s principal aim:
comprehensively comparing FLS and HFS methodologies.
The Iris classification problem will be an example in this
paper to thoroughly compare architectural aspects, including
topologies, layers, and subsystems.

Fig. 1. FLS: Iris classification

Fig. 2. Serial HFS: Iris classification

A. Topologies

The Iris dataset, introduced by Fisher in 1936 [49], serves
as an illustration to formally define the FLSs and HFSs. This
dataset consists of four input variables: sepal length (SL), sepal
width (SW), petal length (PL), and petal width (PW), as well
as one output variable representing the flower type: Sentosa,
Versicolor, and Virginica. Figure 1 depicts the topology of an
FLS for iris classification, while Figures 2 and 3 show the
topology of an HFS for the same purpose.

The concept of HFSs involves organizing the input variables
into a set of low-dimensional FLSs, which are interconnected
hierarchically. Different topologies like serial and parallel can
create HFSs with the same input variables [44].

Fig. 3. Parallel HFS: Iris classificationn
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B. Layers

HFSs are generated by decomposing the input variables in
FLSs into multiple low-dimensional FLSs, creating multiple
layers within HFSs. In serial HFSs, each layer consists of one
FLS, while in parallel HFSs, there can be more than one low-
dimensional FLS per layer. This is illustrated in Figure 2 and
Figure 3, respectively, where the two different HFS topologies
using the same four input variables have different numbers of
layers.

Campello and Amaral argue that for a topology with two
input variables, the most parsimonious models are achieved
by combining the output with another input variable into the
second fuzzy system, repeating this process until all input
variables are utilized [39]. On the other hand, Raju et al.
suggest selecting the most influential input variables as system
variables in the first layer, followed by the next most important
variables in subsequent layers [2]. However, Wang’s study
indicates that there is no definitive conclusion regarding which
inputs are more influential to the system output [38].

C. Subsystem

HFSs are characterized by multiple subsystems contributing
to the final solution’s overall computation. Each subsystem
is designed to have a limited number of inputs and outputs,
a smaller rule base, and serves a specific purpose [50].
These subsystems are interconnected so that the output of
one subsystem becomes the input for subsequent subsystems.
For instance, in Figure 2, the subsystem FLS1 takes inputs
of sepal length and sepal width and produces the output of
Sepal classification. This subsystem is dedicated to the task
of determining the classification of Sepal, and it operates with
its own small rule base, which can be represented as follows:

• IF sepal length is small AND sepal width is small THEN
Sepal is small

• IF sepal length is small AND sepal width is medium
THEN Sepal is small

• IF sepal length is small AND sepal width is large THEN
Sepal is medium

• IF sepal length is medium AND sepal width is small
THEN Sepal is small

• IF sepal length is medium AND sepal width is medium
THEN Sepal is medium

• IF sepal length is medium AND sepal width is large
THEN Sepal is large

• IF sepal length is large AND sepal width is small THEN
Sepal is medium

• IF sepal length is large AND sepal width is medium
THEN Sepal is large

• IF sepal length is large AND sepal width is large THEN
Sepal is large

IV. DECOMPOSITION FROM FUZZY LOGIC SYSTEM TO
HIERARCHICAL FUZZY SYSTEMS

The HFS for iris classification is achieved by breaking
down the input variables of the FLS, as depicted in Figure 1,
into a set of subsystems, namely FLS1, FLS2 and FLS3,

Fig. 4. Example rules in FLS and HFS

as illustrated in Figure 2 and Figure 3. Moreover, this HFS
generates intermediate outputs such as Sepal (S), Sepal Petal
(S P), and Petal (P). HFSs can be seen as a functional
decomposition of FLSs [3]. For example, the FLS and HFS for
iris classification, shown in Figure 1 and Figure 2, respectively,
can be described functionally as:

Flower = F (SL, SW,PL, PW ) ⇒ Flower = f3(f1(SL, SW ), f2(PL, PW ))

An FLS transitioning from a single layer, as depicted in
Figure 1, to two layers, as shown in Figure 2, reduces the
number of rules when considering a fully specified rule base.
The most significant reduction in rules occurs when the HFS
structure has two input variables for each low-dimensional
FLS and incorporates (n − 1) layers [2], where n represents
the total number of input variables, as illustrated in Figure 2.
Assuming two input variables per low-dimensional FLS and m
fuzzy sets for each input variable, including the intermediate
output variables y1, . . . , y(n−2), the total number of rules
(RHFS ) follows a linear function [21] in terms of the number
of input variables n and can be formulated as:

RHFS = (n− 1)m2. (1)

Note that equation (1) applies only to HFS structures with
two input variables per FLS subsystem in a serial structural
form, as shown in Figure 2. In contrast, conventional FLSs
experience an exponential increase in the number of rules with
the number of input variables [51]. For a system with n input
variables and m fuzzy sets for each input variable, the number
of rules (RFLS) (using the “AND” logical connective) can be
represented as:

RFLS = mn (2)

From these equations (1) and (2), it is clear that the total
number of rules in the FLSs (RFLS) is always greater than or
equal to the equivalent HFSs (RHFS). For example, Figure 1
and Figure 2 show an FLS and HFS with 4 input variables
(n = 4) and, assuming that 3 fuzzy sets (m = 3) are defined
for each input variable, the total number of rules for this FLS
is RFLS = mn = 34 = 81 whereas for the HFS, the total
number of rules is RHFS = (n − 1)m2 = (4 − 1)32 = 27.
This demonstrates that the HFS approach significantly reduces
the number of rules compared to the FLS approach.

Figure 4 illustrates the rule structure comparison between
the FLSs and HFSs for Iris classification. HFSs decompose the
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TABLE I
RESULT OF INTERPRETABILITY COMPUTED USING HMEAN INDEX

Iris classification Index (Hmean)

FLS 0.194
Parallel HFS 0.493
Serial HFS 0.493

rules from FLSs into smaller rules within multiple subsystems,
specifically FLS1, FLS2, and FLS3. This decomposition re-
sults in a simplified rule structure in HFSs, as each subsystem
has fewer variables per rule than FLSs. As a result, the rules
in HFSs are more straightforward and easier to comprehend,
enhancing the human readability of the rule base [52].

A. Interpretability

Razak et al., [20] proposed the H framework to evaluate
the interpretability of the HFSs by combining interpretability
assessments from each subsystem into a single overall metric.
The H framework aims to provide a comprehensive measure
of HFS interpretability.

Hmean =

q∑
j=1

(
lj

sj∑
k=1

Ejk/sj

)
, (3)

where Ejk is the underlying (standard) FLS index associated
with the subsystem k at layer j, for example, the Fuzzy (F)
index, lj is the weight associated with layer j of the HFS, sj
is the number of subsystems located in layer j, s is the total
number of subsystems and q is the number of layers of the
HFS.

The interpretability of the FLSs and HFSs, including both
Parallel and Serial HFSs for the case of the Iris classification
problem, was evaluated using the Hmean index. Table I shows
the assessment results, indicating that both HFSs achieved a
higher index than FLS. This suggests that HFSs are more
interpretable than FLS, particularly in the context of the Iris
classification example.

B. Complexity

Razak et al. suggested a method for evaluating the com-
plexity of HFSs that takes into account the complexity of
its structure, which requires several subsystems, layers, and a
dynamic topology [15], [53]. Also, the approach seems to be
better with its combined structure and rule-based complexity.
It can be computed as follows:

CHFS = CRB

⊕
CS (4)

where CRB is rule-based complexity, CS is structural com-
plexity, and

⊕
indicates the generic aggregation operator such

as min, max and mean. In this paper, we will use the mean in
(4) to measure the complexity of HFSs. Further information
for this (4) can be seen in [53], [54].

V. DISCUSSION

The comparison between traditional FLS and the proposed
HFS reveals critical insights into their respective advantages.
HFS exhibits superior interpretability compared to FLS due to
its hierarchical structure. This hierarchical organization allows
complex systems to be decomposed into multiple levels of
fuzzy rules, facilitating a more intuitive understanding of sys-
tem behaviour. By breaking down the FLS into HFS, we can
accurately represent the system’s fundamental dynamics and
decision-making processes. This enhanced interpretability is
particularly valuable in practical applications where describing
and comprehending system behaviour is essential.

Furthermore, the decomposition of FLS into HFS con-
tributes to a reduction in system complexity. By partitioning
the system into multiple levels, HFS simplifies the modelling
process, with each level focusing on specific aspects of system
behaviour. This simplification of fuzzy principles enhances
overall system performance, offering a less complex repre-
sentation that can be advantageous regarding computational
resources and maintenance.

HFS emerges as a powerful tool for solving complex
and hierarchical problems due to its enhanced interpretability
and reduced complexity. Its hierarchical structure enables a
detailed analysis of system behaviour, revealing the system’s
global and local aspects. Moreover, refining the output by
considering local behaviours at the second level of HFS
enhances the precision of system forecasts and decisions.

However, it is crucial to acknowledge the drawbacks of
HFS. Introducing a hierarchical structure complicates the
design and implementation process, requiring careful con-
sideration of system characteristics and the establishment of
appropriate norms at each level. The hierarchical strategy
may also incur higher computational costs due to the added
processing layers. Despite these challenges, the benefits of
improved interpretability and reduced complexity position
HFS as a promising approach for addressing complex and
hierarchical problems.

In future research, further exploration into the practical
implementation and optimization of HFS is warranted. Ad-
ditionally, investigating strategies to mitigate the challenges
associated with hierarchical design and computational costs
would contribute to the broader applicability and effectiveness
of HFS in various domains.

VI. CONCLUSION

In conclusion, this study has rigorously compared Hier-
archical Fuzzy Systems (HFS) with traditional Fuzzy Logic
Systems (FLS), highlighting the significant advantages of HFS.
HFS offers enhanced interpretability through its hierarchical
structure and reduces system complexity by decomposing
FLS into multiple levels. Despite challenges such as design
complexity and potential computational costs, our findings
underscore the potential of HFS as a practical methodology
for addressing complex and hierarchical problems. Future
research should prioritize optimizing hierarchical structure
design, minimizing computational expenses, and exploring
diverse applications of HFS across various domains. Overall,
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our study contributes valuable insights into the capabilities of
HFS, paving the way for its broader adoption and increased
effectiveness in real-world scenarios.
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