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Abstract—This research is focused on Unconstrained Opti-
mization problems. Among a number of methods that can be
used to solve Unconstrained Optimization problems we have
worked on Gradient and Coordinate Descent methods. Step
size plays an important role for optimization. Here we have
performed numerical experiment with Gradient and Coordinate
Descent method for several step size choices. Comparison between
different variants of Gradient and Coordinate Descent methods
and their efficiency are demonstrated by implementing in loss
functions minimization problem.

Index Terms—Convex function, Coordinate descent, Differen-
tiable function, Gradient descent, Lipschitz constant, L-smooth
function, Unconstrained optimization.

I. INTRODUCTION

UNCONSTRAINED optimization [12], [15] problem min-
imizes an objective function that depends on real vari-

ables with no restrictions on their values. Mathematically, if
x ∈ Rn is a real vector with n ≥ 1 components and if
f : Rn → R is a smooth function. Then, the unconstrained
optimization problem is of the form

(P ) min
x

f(x)

s.t x ∈ Rn

Thus we want to find an optimal decision, that is x∗ ∈ Rn

such that

f(x∗) ≤ f(x), ∀ x ∈ Rn.

Unconstrained optimization have been used in applications
for many years, and their popularity continues to grow because
of their usefulness in data analysis, machine learning, and
other areas of current interest. Unconstrained optimization
problems may arise directly in many applications or they
may arise from reformulations of constrained optimization
problems. Constraints of an optimization problem can be
replaced in the objective function with penalized terms and
the constrained optimization problem can be solved as an
unconstrained problem. In this paper we have worked on
iterative techniques for solving unconstrained optimization
problem specifically on Gradient descent method and Coor-
dinate Descent method.
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A. Main Features of Algorithms

General structure of an iterative algorithm for solving un-
constrained minimization problem is as follows

• Choose a starting point x0.
• Beginning at x0, generate a sequence of iterates {xk}∞k=0

with non-increasing function (f) value until a solution
point with sufficient accuracy is found or until no further
progress can be made.
To generate the next iterate xk+1, the algorithm uses
information about the function at xk and possibly earlier
iterates.

Both the Gradient Descent method and Coordinate descent
method follow the above two steps in minimizing a function.

• Step Length: A suitable step-length can help the initial
guess to reach the goal in the fastest way. If the step-
length is too long it may exceed the target and on the
contrary, if it is too short the convergence will be slow.

• Descent Direction: At each iteration a descent direction
has to determine. This direction is opposite to the direc-
tion of gradient of the function at the current point,

Here we will concentrate on the discussion of different aspects
of Gradient Descent and Coordinate Descent method which
will assist us to find a right descent direction.
The remainig part of this paper is organized as follows: In
the next section we have discussed choice of step length
and the respective algorithms of for Gradient descent method.
The following section includes the discussion of co-ordinate
descent method. Choice of co-ordinates to update at each
itearion is also discussed briefly. A comparison bethween GD
and CD for different choice of stepsize is shown numerically
in section IV. In section V we have implemented the idea of
GD abd CD in loss function minimization problem. We have
concluded our results in section VI.

II. GD: GRADIENT DESCENT

The basic Gradient Descent Method [3], [10], [11], [4] is
based on fixed step size. A variant of GD includes choice
of differnt step size so that the algorithm performs efficiently.
Moreover, step length can be chosen with backtracking armijo
condition to get a better approximation. In this section we will
discuss each of these variants of GD.
The following algorithms [3], [5], [4], [14] is on Gradient
Descent Method of different variants. step size.

Algorithm 1.(Gradient Descent with Fixed Step Size)
The algorithm is initialized with a guess x0, a maximum
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iteration count N . It proceeds as follows:
Step 1: For j = 1, 2, . . . , N .
repeat
Step 2: xj+1 ← xj − α∇f(xj).
Step 3: xj := xj+1

until termination test satisfied;
The termination criterion includes one of the followings.
• Whenever the maximum iteration N exceeds.
• Whenever there is no significant change in successive

values of x. That is, whenever

‖xk+1 − xk‖
xk

≤ ε

for a small tolerance ε > 0.
It should be noted that choice of fixed step size does not always
perform properly for a particular situation. Step size adaptation
during the algorithm plays an important role in finding a good
approximation. For example:
• If the function value increases at some point after

taking a step, that means we have chosen a large step.
Decreasing the step size can fix the problem.

• If the function value decreases with a suitable choice
of step size, then we have to verify the situation by
increasing the length of the step.

Here we are ready to introduce two algorithms of Gradient
Descent with Step Size adaptation

Algorithm 2. (Gradient Descent with Step Size adaptation)
The algorithm is initialized with a guess x, a maximum
iteration count N . It proceeds as follows:
Step 1: Repeat upto N iterations
Step 2: y ← x − α∇f(x)T , fy ← f(y)
Step 3: if fy < fx, then
Step 4: x← y
Step 5: α← 1.2α
Step 6: else α← 0.5α

Algorithm 3. (Gradient Descent with Backtracking Armijo)
We start with some initial estimates: x, given step size α, β,
τ , maximum iteration N .
step 1: For j = 1, 2, . . . , N
step 2: xnew = x− α∇f(x)T
step 3: if f(xnew) ≤ f(x)− βα

ww∇f(x)Tww2

step 4: Set x = xnew and α = given value.
step 5: else α = τα. Then Go To Step 3.

A. Convergence of Gradient Descent Method

Different variants of gradient descent method depend on
how the step size (α) is chosen. Smaller step size may
lead to use huge computational time whereas, larger step
size can over shoot the minimum point and therefore may
fail to converge. Choice of the step sizes depends on the
behavior of the function. In addition to that it can give an
estimation on the number of iterations needed. Note that,
gradient descent converge to a local minimum, even with the
fixed step size. It is observed that as the iterates approach
to a local minimum, gradient descent will automatically take

smaller steps. Therefore, no need to decrease the step size over
time.

The following result [1] gives an estimation of the number
of iterations when the step size is constant.

Theorem 1: If ∇f is Lipschitz continuous with constant
L > 0, then gradient descent with fixed step size α ≤ 1

L
satisfies

f(xk)− f(x∗) ≤ ‖x
0 − x∗‖2

2αk
.

III. CD: COORDINATE DESCENT

Coordinate descent [2], [6] algorithms solve optimization
problems by successively performing approximate minimiza-
tion along coordinate directions. They have been used in
applications for many years. Recently they are being used in
many research area such as data analysis, machine learning
and so on. This paper describes the basic coordinate descent
approach, together with variants. Coordinate descent (CD)
algorithms are iterative methods in which each iterate is
obtained by fixing most components of the variable vector
x at particular values from the current iteration, and approxi-
mately minimizing the objective with respect to the remaining
components. Each such subproblem is a lower dimensional
minimization problem, and thus can be solved more easily
than the original problem.
The goal is to solve

min
x∈Rn

f(x)

where f is convex and smooth (f is continuously differentiable
and gradient is Lipschitz continuous).
When n is large, it becomes computationally expensive to
calculate full gradients, which means gradient descent is not
necessarily always efficient. Observe that for unconstrained
problems, x∗ is an optimal solution if ∇f(x∗) = 0. To find
the optimal solution, it makes sense to search along each
coordinate direction. This motivates the so called Coordinate
Descent Algorithms.

A. Rules for Selecting Coordinates

There are several ways and orders to decide which coordi-
nate to update at each iteration.
Cyclic Order: Run all coordinates in cyclic order, that is
1→ 2→ · · · → n.
Gauss-Southwell: At each iteration, pick coordinate i so that

i = argmax
1≤j≤n

|∇jf(x)
T |

Random Permutation: Run cyclic order on a permuted in-
dex(sample without replacement).
For example if n = 3 we could have the following:
Cyclic: 1st iteration: (1→ 2→ 3),
2nd iteration: (1→ 2→ 3),
3rd iteration: (1→ 2→ 3) . . .
Random Permutation: 1st iteration: (1→ 2→ 3),
2nd iteration: (3→ 1→ 2),
3rd iteration:(2→ 1→ 3) . . .

AJSE Volume: 19, Issue: 3, Page 107 - 115 ©AJSE 2020 Page | 108



B. Iterative Notion for Coordinate Descent
Starting with some initial guess x0, the successive approxi-

mations are calculated by repeating the following process for
k = 1, 2, 3, . . .

xk1 ∈ argmin
x1

f(x1, x
k−1
2 , xk−13 , . . . , xk−1n )

xk2 ∈ argmin
x2

f(xk1 , x2, x
k−1
3 , . . . , xk−1n )

xk3 ∈ argmin
x3

f(xk1 , x
k
2 , x3, . . . , x

k−1
n )

. . .

xkn ∈ argmin
xn

f(xk1 , x
k
2 , x

k
3 , . . . , xn).

Here the variables are updated in Gauss-Seidel style.

C. Coordinate Descent Algorithms and Convergences
Here we have discussed the alroithms of Coordinate

descent methods. The convergence of these algorithms are
followed from [9], [7], [8]

Algorithm 4. Gauss-Southwell Coordinate Descent
Set t← 0 and choose x0 ∈ Rn;
repeat

Step 1: choose index it = argmax1≤j≤n

∇jf(x
(t))
;

Step 2: x(t+1) ← x(t) − 1
LUit∇itf(x

(t));
Step 3: k ← k + 1;

until termination test is satisfied;
Theorem 2: If f is convex and L-smooth, then

f(x(t))− f∗ ≤
2Ln

wwwx0 − x∗www2

2αk
Algorithm 5. Cyclic Coordinate Descent:

Set t← 0 and choose x0 ∈ Rn;
repeat

Step 1: at iteration t, for i = 1, 2, . . . , n;
Step 2: x(t)i ← x

(t)
i−1 − 1

LUi∇if(x
(t)
i−1);

Step 3: set x(t+1) = x
(t+1)
n ;

Step 4: k ← k + 1;
until termination test is satisfied;

Theorem 3: If f is convex and L-smooth, then

f(x(t))− f∗ ≤ 4L(n+ 1)R(x0)
2

t
.

Where R(x0) = max
{wwwx− x∗www : f(x) ≤ f(x0)

}
.

IV. NUMERICAL EXPERIMENTS WITH GD AND CD
For numerical experiment we consider two functions

f1(x, y) = x4 + 2x3 + 2x2 + y2 − 2xy (1)

f2(x, y) = 4x2 − 6xy + 5y2 − 20x+ 40 (2)

which are convex and differentiable at every point. The local
minimal of the function f1 is (0, 0) and f2 is

(
50
11 ,

30
11

)
. We

start with an initial point (1, 3) and (7, 6) for function f1 and
f2 respectively. Besides we observe how different approaches
work to get a good approximation of the exact result.

A. GD with Different Step Sizes

First we have applied Gradient Descent algorithm with step
size variation i) fixed step size, ii) step size adaptation and iii)
with Backtracking Armijo condition on both functions. We
started with stepsize α1 = 0.09 for f1 and α2 = 0.05 for f2
and run our experiment upto 50 iteartions. Some successive
approximations are shown in the following tables. Graphical
representations demonstrates the improvement in each iteration
of GD for different step sizes. In the next turn, the step size
adaptation rule has been used to improve the approximation.

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Fig. 1: GD with fixed step size on f1(x, y).

TABLE I: Some iterations of GD on f1(x, y) with fixed step
size

Iteration No. |f1(xexact)− f1(x)|

1 5.698051

2 3.381916
...

...

47 0.000449

48 0.000387

49 0.000333

50 0.000287

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Fig. 2: GD with fixed step size on f2(x, y).
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TABLE II: Some iterations of GD on f2(x, y) with fixed step
size

Iteration No. |f2(xexact)− f2(x)|

1 17.30454545
2 12.37164545
...

...
47 0.0000085
48 0.0000062
49 0.0000045
50 0.0000033
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-2

-1

0

1

2
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4

Fig. 3: GD with step size adaptation on f1(x, y).

TABLE III: Some iterations of GD with step size adaptation
on f1(x, y)

Iteration No. |f1(xexact)− f1(x)| Adaptive step

1 5.698051 0.108

2 3.53474 0.1296
...

...
...

47 1.78× 10−10 0.430597
48 1.66× 10−10 0.516717
49 1.66× 10−10 0.258358
50 4.46× 10−11 0.31003

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Fig. 4: GD with step size adaptation on f2(x, y).

TABLE IV: Some iterations of GD with step size adaptation
on f2(x, y)

Iteration No. |f2(xexact)− f2(x)| Adaptive step

1 13.41655 0.108

2 6.235459 0.1296
...

...
...

47 2.32× 10−12 0.074756
48 2.84× 10−13 0.089708
49 1.35× 10−13 0.107649
50 7.82× 10−14 0.129179

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

Fig. 5: GD with Backtracking Armijo on f1(x, y).

TABLE V: Some iterations of GD on f1(x, y) with Backtrack-
ing Armijo

Iteration No. |f1(xexact)− f1(x)|

1 8
2 8
...

...
47 6.29× 10−06

48 3.88× 10−06

49 3.88× 10−06

50 3.88× 10−06

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Fig. 6: GD with Backtracking Armijo on f2(x, y).
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TABLE VI: Some iterations of GD on f2(x, y) with Back-
tracking Armijo

Iteration No. |f2(xexact)− f2(x)|

1 29.454545
2 13.254545
...

...
47 5.02× 10−09

48 5.02× 10−09

49 1.75× 10−09

50 1.75× 10−09

0 5 10 15 20 25 30 35 40 45

No. of Iterations

10-10

10-5

100

|f 1(x
)-f

1(x
ex

ac
t)|

GD fixed Step  Size
GD with Step Size Adaptation
GD backtracking armijo

(a) on f1(x, y)

0 5 10 15 20 25 30 35 40 45 50

No. of Iterations

10-15

10-10

10-5

100

105

|f 2(x
)-f

2(x
ex

ac
t)|

GD fixed Step  Size
GD with Step Size Adaptation
GD backtracking armijo

(b) on f2(x, y)

Fig. 7: Comparison on GD with different step sizes for f1(x, y)
in (a) and f2(x, y) in (b)

In Figure 7(a) we have shown the performance of GD
on f1(x, y) for different step size in same frame which
demonstrates that that for gradient descent method, step size
adaptation technique works better than others. Though upto
8th iteration all of them converges to same approximation
but after 8th iteration error term decreases dramatically
for step size adaptation technique because it pays careful
attention to both increasing and decreasing the value of
the function. On the other hand, backtracking armijo
technique only decreases the value of the function against a
specific condition. Again for the case of fixed step size, it
only goes towards descent direction with a certain step length.

Whereas in figure 7(b) the experiment is showed on f2(x, y)
and it also results the better performance of step size adapta-
tion technique compared to fixed step size and backtracking
armijo rule.

B. CD with Different Step Sizes

In this section we have applied the three techniques of
choosing step size a on coordinate descent method. The
tables shows that step size adaptation technique gives better
approximations for coordinate descent method in 50 iteration.

-4 -3 -2 -1 0 1 2 3 4
-4
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-2

-1

0

1

2

3

4

Fig. 8: CD with fixed step size on f1(x, y).

TABLE VII: Some iterations of CD on f1(x, y) with fixed
step size

Iteration No. |f1(xexact)− f1(x)|

1 5.8176

2 3.2484366
...

...

47 0.000196

48 0.000166

49 0.000141

50 0.00012

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Fig. 9: CD with fixed step size on f2(x, y).
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TABLE VIII: Some iterations of CD on f2(x, y) with fixed
step size

Iteration No. |f2(xexact)− f2(x)|

1 15.846545

2 10.746733
...

...

47 3.24× 10−7

48 2.2× 10−7

49 1.5× 10−7

50 1.02× 10−7

-4 -3 -2 -1 0 1 2 3 4
-4
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-1

0

1

2

3

4

Fig. 10: CD with step size adaptation on f1(x, y).

TABLE IX: Some iterations of CD with step size adaptation
on f1(x, y)

Iteration No. |f1(xexact)− f1(x)| Adaptive step

1 5.44 0.144
2 2.763612 0.20736
...

...
...

47 2.76× 10−11 0.397406
48 1.77× 10−11 0.238444
49 5.9× 10−12 0.343359
50 3.23× 10−12 0.494437

-2 0 2 4 6 8 10
-2

0

2

4

6

8

10

Fig. 11: CD with step size adaptation on f2(x, y).

TABLE X: Some iterations of CD with step size adaptation
on f2(x, y)

Iteration No. |f2(xexact)− f2(x)| Adaptive step

1 13.254545 0.12
2 5.976209 0.072
...

...
...

47 1.42× 10−14 3.43× 10−9

48 1.42× 10−14 8.58× 10−10

49 1.42× 10−14 2.15× 10−10

50 1.42× 10−14 5.36× 10−11

-4 -3 -2 -1 0 1 2 3 4
-4
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0

1

2

3

4

Fig. 12: CD with backtracking armijo on f1(x, y).

TABLE XI: Some iterations of CD on f1(x, y) with backtrack-
ing armijo condition

Iteration No. |f1(xexact)− f1(x)|

1 6.56
2 4
...

...
47 7.74× 10−10

48 7.74× 10−10

49 3.87× 10−10

50 2.42× 10−10

-2 0 2 4 6 8 10
-2
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4

6

8

10

Fig. 13: CD with backtracking armijo on f2(x, y).
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TABLE XII: Some iterations of CD on f2(x, y) with back-
tracking armijo condition

Iteration No. |f2(xexact)− f2(x)|

1 21.192545
2 10.974881
...

...
47 1.66× 10−8

48 8.11× 10−9

49 3.52× 10−9

50 3.34× 10−9

0 5 10 15 20 25 30 35 40 45 50

No. of Iterations

10-12

10-10
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10-4
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100
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|f 1(x
)-f

1(x
ex

ac
t)|

CD fixed Step  Size
CD with Step Size Adaptation
CD backtracking armijo

(a) on f1(x, y)

0 5 10 15 20 25 30 35 40 45 50

No. of Iterations

10-15

10-10

10-5

100

105

|f 2(x
)-f

2(x
ex

ac
t)|

CD fixed Step  Size
CD with Step Size Adaptation
CD backtracking armijo

(b) on f2(x, y)

Fig. 14: Comparison on CD with different step sizes for
f1(x, y) in (a) and f2(x, y) in (b)

Figure 14 (a) and (b) gives the comparison of three cases
of CD on both f1(x, y) and f2(x, y) respectively in the same
frame which implies that step size adaptation technique gives
better approximations for coordinate descent method but if we
stop before 35th iteration (figure (a)) then backtracking armijo
technique gives more accuracy than step size adaptation. For
a better accuracy one can insert the stopping criterion.∣∣∣f(x)− f(xexact)∣∣∣ < ε; suppose ε = 10−05

The more the ε tends to zero, the more accuracy will be
obtaind. After a certain number of iterations, step size
adaptation technique will perform better than backtracking
armijo.

Comment :
The resulting comparison on GD and CD may vary consider-
ing different choices of functions.

V. LOSS FUNCTION MINIMIZATION

We are going to define loss function [16], [5], [17] as

f(x) =
1

n

n∑
i=1

(aTi x− bi)2

Where ai is a row vector, x and bi are column vectors.
This is the least-squares loss function that gives rise to the

ordinary least squares regression model. The loss function is
obviously convex function. Minimizing an arbitrary function
is, in general, very difficult, but if the objective function to be
minimized is convex then things become considerably simpler.
The key advantage of dealing with convex function is that a
local optima is also a global optima.

We will concentrate on numerical experiment with
L2−regularized least square problem using gradient descent
and coordinate descent algorithm. We consider,

f(x) =
1

n

n∑
i=1

(aTi x− bi)2 +
λ

2
‖x‖2

The main goal is to predict x that minimizes the loss
function

f(x) =
1

n

n∑
i=1

fi(x)

The function f1, f2, f3, ..., fn are assumed to be L −
smooth. Clearly, (aTi x − bi)

2 is convex, therefore, f(x) is
strongly convex 1 with λ.

We can estimate the Lipschitz constant Li for the function
fi as (2‖ai‖2+λ). Thus Lipschitz constant for f(x) would be
max1≤i≤n{Li}. In this case, a training set of 50 examples are
being considered. Each example comprises 30 features. That
is n = 50 and d = 30. The entries of ai are taken as random
integers from 1 to 10. The constant λ is considered as 1

n .
We have applied both GD and CD and run the algorithms

for 100 iterations.

Number of Iterations
100 101 102

T
 ||

101

102

103

104

105

Fig. 15: Loss function minimization with GD.

1A convex function f is strongly convex if and only if, there exist a constant
µ > 0 such that the function f(x) + µ

2
‖x‖2 is convex.
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TABLE XIII: Some observation of GD for loss function
minimization

Iteration No. ‖∇f(x)‖

1 12678.71
2 5314.989
...

...
97 33.5855
98 33.37241
99 33.16144
100 32.95256

Number of Iterations
100 101 102

T
 ||

101

102

103

104

Fig. 16: Loss function minimization with CD.

TABLE XIV: Some observation of CD for loss function
minimization

Iteration No. ‖∇f(x)‖

1 7038.337
2 3906.364
...

...
97 37.80994
98 37.55346
99 37.29952
100 37.04807

Number of Iterations
100 101 102

T
 ||

101

102

103

104

105

Loss Function Minimization with GD
Loss Function Minimization with CD

Fig. 17: GD vs CD for Loss function minimization.

Figure 17 represents the performance of GD and CD in loss
function minimization for 100 iterations. It is clearly seen that
GD works better than CD. But fo a large number of iterations
the performance of two methods are quite similar.

Number of Iterations
100 101 102 103

f(
x)

10-1

100

101

102

103

104

105

CD with Random Permutation
CD with Cyclic Order
CD with Gauss-Southwell

Fig. 18: GD vs CD for Loss function minimization.

We have applied CD on loss function minimization with
different choice of selecting coordinates for the update. From
figure 18 it can be concluded that though at the initial stage
Gauss-Southwell was slow in convergence but after a certain
iteration it works better then other two techniques.

VI. CONCLUSION

In this paper we have worked on unconstrained optimization
problem. Specially we are focused on performance of iterative
techniques Gradient Descent (GD) method and Coordinate
Descent (CD) method in solving the unconstrained optimiza-
tion problem. We have applied both GD and CD for different
choice of step size and check their performance in minimizing
a problem. Numerical results show that for both GD and CD
method step size adaptation technique converges faster until a
certain number of iterations. And also we may conclude that
this comparison may vary for different choices of function
and step size. A comparison between these two for solving
loss function minimization is also demonstrated which shows
that for loss function minimization problem GD works better
than CD in general. In case of CD, Gauss-Southwell technique
can be used for the updates of coordinates at different iteration
for getting faster convergence.
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